Publications by authors named "Johanna Gomez"

Cytokines secreted by individual immune cells regulate tissue regeneration and allow communication between various cell types. Cytokines bind to cognate receptors and trigger the healing process. Determining the orchestration of cytokine interactions with their receptors on their cellular targets is essential to fully understanding the process of inflammation and tissue regeneration.

View Article and Find Full Text PDF

In the framework of a viral discovery research program using metagenomics, Human Pegivirus-1 reads (HPgV-1, formerly known as GBV-C) were detected in plasma pools of healthy blood donors from seven sub-Saharan African countries. For five of these countries, Mauritania, Mali, Niger, Burundi and Madagascar, no data about HPgV-1 genotypes was reported to date. To confirm our metagenomic findings and further investigate the genotype diversity and distribution of HPgV-1 in Africa, 400 blood donations from these five localities as well as from Cameroon, the Democratic Republic of Congo (DRC) and the Burkina Faso were screened with a RT-nested PCR targeting the viral 5'NCR region.

View Article and Find Full Text PDF

Cycloviruses, small ssDNA viruses belonging to the Circoviridae family, have been suggested as possible causes of enteric, respiratory and neurological disorders in human patients. One of these species, cyclovirus-Vietnam (CyCV-VN), initially isolated from cerebrospinal fluid samples of patients with unexplained neurological disorders, has since been reported in serum samples from chronically patients infected with HBV, HCV or HIV, in Italy. On the other hand, CyCV-VN was not detected in serum samples from healthy individuals.

View Article and Find Full Text PDF

Chemical and mechanical cues from the cerebrospinal fluid (CSF) can affect the development and function of the central nervous system (CNS). How such cues are detected and relayed to the CNS remains elusive. Cerebrospinal fluid-contacting neurons (CSF-cNs) situated at the interface between the CSF and the CNS are ideally located to convey such information to local networks.

View Article and Find Full Text PDF

Precise control of speed during locomotion is essential for adaptation of behavior in different environmental contexts [1-4]. A central question in locomotion lies in understanding which neural populations set locomotor frequency during slow and fast regimes. Tackling this question in vivo requires additional non-invasive tools to silence large populations of neurons during active locomotion.

View Article and Find Full Text PDF

Throughout vertebrates, cerebrospinal fluid-contacting neurons (CSF-cNs) are ciliated cells surrounding the central canal in the ventral spinal cord. Their contribution to modulate locomotion remains undetermined. Recently, we have shown CSF-cNs modulate locomotion by directly projecting onto the locomotor central pattern generators (CPGs), but the sensory modality these cells convey to spinal circuits and their relevance to innate locomotion remain elusive.

View Article and Find Full Text PDF

The cerebrospinal fluid (CSF) constitutes an interface through which chemical cues can reach and modulate the activity of neurons located at the epithelial boundary within the entire nervous system. Here, we investigate the role and functional connectivity of a class of GABAergic sensory neurons contacting the CSF in the vertebrate spinal cord and referred to as CSF-cNs. The remote activation of CSF-cNs was shown to trigger delayed slow locomotion in the zebrafish larva, suggesting that these cells modulate components of locomotor central pattern generators (CPGs).

View Article and Find Full Text PDF