Publications by authors named "Johanna Gassler"

Article Synopsis
  • Life starts with a shift in genetic control from the mother to the embryo during a process called zygotic genome activation (ZGA), which is crucial but not fully understood in mammals.
  • Researchers found that the orphan nuclear receptor Nr5a2 plays a vital role as an activator of ZGA in mouse embryos, specifically at the two-cell stage.
  • Nr5a2 helps regulate a significant portion of ZGA genes, enhancing chromatin accessibility and binding DNA to facilitate gene activation.
View Article and Find Full Text PDF

Eukaryotic genomes are compacted into loops and topologically associating domains (TADs), which contribute to transcription, recombination and genomic stability. Cohesin extrudes DNA into loops that are thought to lengthen until CTCF boundaries are encountered. Little is known about whether loop extrusion is impeded by DNA-bound machines.

View Article and Find Full Text PDF

The frequency of egg aneuploidy and trisomic pregnancies increases with maternal age. To what extent individual approaches can delay the "maternal age effect" is unclear because multiple causes contribute to chromosomal abnormalities in mammalian eggs. We propose that ovulation frequency determines the physiological aging of oocytes, a key aspect of which is the ability to accurately segregate chromosomes and produce euploid eggs.

View Article and Find Full Text PDF

Cohesin is essential for genome folding and inheritance. In somatic cells, these functions are both mediated by Scc1-cohesin, which in mitosis is released from chromosomes by Wapl and separase. In mammalian oocytes, cohesion is mediated by Rec8-cohesin.

View Article and Find Full Text PDF

In mammals, chromatin organization undergoes drastic reorganization during oocyte development. However, the dynamics of three-dimensional chromatin structure in this process is poorly characterized. Using low-input Hi-C (genome-wide chromatin conformation capture), we found that a unique chromatin organization gradually appears during mouse oocyte growth.

View Article and Find Full Text PDF

The 3D folding of the genome is linked to essential nuclear processes including gene expression, DNA repair, and replication. Chromatin conformation capture assays such as Hi-C are providing unprecedented insights into higher-order chromatin structure. Bulk Hi-C of millions of cells enables detection of average chromatin features at high resolution but is challenging to apply to rare cell types.

View Article and Find Full Text PDF

Fertilization triggers assembly of higher-order chromatin structure from a condensed maternal and a naïve paternal genome to generate a totipotent embryo. Chromatin loops and domains have been detected in mouse zygotes by single-nucleus Hi-C (snHi-C), but not bulk Hi-C. It is therefore unclear when and how embryonic chromatin conformations are assembled.

View Article and Find Full Text PDF

Chromatin is reprogrammed after fertilization to produce a totipotent zygote with the potential to generate a new organism. The maternal genome inherited from the oocyte and the paternal genome provided by sperm coexist as separate haploid nuclei in the zygote. How these two epigenetically distinct genomes are spatially organized is poorly understood.

View Article and Find Full Text PDF