Limited response rates and frequent relapses during standard of care with hypomethylating agents in myelodysplastic neoplasms (MN) require urgent improvement of this treatment indication. Here, by combining 5-azacytidine (5-AZA) with the pan-lysyl oxidase inhibitor PXS-5505, we demonstrate superior restoration of erythroid differentiation in hematopoietic stem and progenitor cells (HSPCs) of MN patients in 20/31 cases (65%) versus 9/31 cases (29%) treated with 5-AZA alone. This effect requires direct contact of HSPCs with bone marrow stroma components and is dependent on integrin signaling.
View Article and Find Full Text PDFPatient-derived xenograft (PDX) models have emerged as versatile preclinical platforms for investigation of functional pathomechanisms in myelodysplastic syndromes (MDS) and other myeloid neoplasms. However, despite increasingly improved methodology, engraftment efficiencies frequently remain low. Humanized three-dimensional scaffold models (ossicle xenotransplantation models) in immunocompromised mice have recently been found to enable improved engraftment rates of healthy and malignant human hematopoiesis.
View Article and Find Full Text PDFTranscription poses a threat to genomic stability through the formation of R-loops that can obstruct progression of replication forks. R-loops are three-stranded nucleic acid structures formed by an RNA-DNA hybrid with a displaced non-template DNA strand. We developed RNA-DNA Proximity Proteomics to map the R-loop proximal proteome of human cells using quantitative mass spectrometry.
View Article and Find Full Text PDFAutologous hematopoietic cell transplantation (HCT) is suitable for consolidation of favorable-/intermediate-risk AML patients in CR1. However, ~50% of AML patients relapse after autologous HCT, and efficacy of subsequent salvage strategies including allogeneic HCT remains unclear. We studied 123 consecutive patients with newly diagnosed AML undergoing high-dose chemotherapy (HDCT)/autologous HCT in CR1.
View Article and Find Full Text PDFThe bone marrow (BM) stroma in myeloid neoplasms is altered and it is hypothesized that this cell compartment may also harbor clonal somatically acquired mutations. By exome sequencing of in vitro expanded mesenchymal stromal cells (MSCs) from n = 98 patients with myelodysplastic syndrome (MDS) and n = 28 healthy controls we show that these cells accumulate recurrent mutations in genes such as ZFX (n = 8/98), RANK (n = 5/98), and others. MDS derived MSCs display higher mutational burdens, increased replicative stress, senescence, inflammatory gene expression, and distinct mutational signatures as compared to healthy MSCs.
View Article and Find Full Text PDFPreclinical research of myelodysplastic syndromes (MDSs) is hampered by a lack of feasible disease models. Previously, we have established a robust patient-derived xenograft (PDX) model for MDS. Here we demonstrate for the first time that this model is applicable as a preclinical platform to address pending clinical questions by interrogating the efficacy and safety of the thrombopoietin receptor agonist eltrombopag.
View Article and Find Full Text PDFNon-targeted effects (NTE) of ionizing radiation may initiate myeloid neoplasms (MN). Here, protein mediators (I) in irradiated human mesenchymal stromal cells (MSC) as the NTE source, (II) in MSC conditioned supernatant and (III) in human bone marrow CD34+ cells undergoing genotoxic NTE were investigated. Healthy sublethal irradiated MSC showed significantly increased levels of reactive oxygen species.
View Article and Find Full Text PDFWhile young blood can restore many aged tissues, its effects on the aged blood system itself and old hematopoietic stem cells (HSCs) have not been determined. Here, we used transplantation, parabiosis, plasma transfer, exercise, calorie restriction, and aging mutant mice to understand the effects of age-regulated systemic factors on HSCs and their bone marrow (BM) niche. We found that neither exposure to young blood, nor long-term residence in young niches after parabiont separation, nor direct heterochronic transplantation had any observable rejuvenating effects on old HSCs.
View Article and Find Full Text PDFGenotoxic bystander signals released from irradiated human mesenchymal stromal cells (MSC) may induce radiation-induced bystander effects (RIBEs) in human hematopoietic stem and progenitor cells (HSPC), potentially causing leukemic transformation. Although the source of bystander signals is evident, the identification and characterization of these signals is challenging. Here, RIBEs were analyzed in human CD34+ cells cultured in distinct molecular size fractions of medium, conditioned by 2 Gy irradiated human MSC.
View Article and Find Full Text PDFSomatic mutations in genes coding for splicing factors, e.g. SF3B1, U2AF1, SRSF2, and others are found in approximately 50% of patients with Myelodysplastic Syndromes (MDS).
View Article and Find Full Text PDFAlthough acute promyelocytic leukemia (APL) has evolved to the AML entity with the best prognosis, typical 'early death' (ED) events still account for mortality rates of ∼20% in population-based studies. To investigate this poorly understood issue we performed whole transcriptome analysis of = 7 APL ED cases compared to = 7 APL cases with long term remission. We discovered the proteins S100A8/S100A9 and EFEMP1 as the most differentially expressed factors.
View Article and Find Full Text PDFCrit Rev Oncol Hematol
July 2020
At present, hemato-oncologic diagnostics is facing dynamic changes. This applies to the exploration and introduction of novel technologies such as next-generation sequencing or digital droplet PCR for myeloid and lymphatic malignancies in laboratory routine, or liquid biopsy for patients with lymphoid malignancies. Targeted therapies such as FLT3 or IDH1/IDH2 inhibitors for acute myeloid leukemia are entering clinical practice.
View Article and Find Full Text PDFSeparase, a cysteine endopeptidase, is a key player in mitotic sister chromatid separation, replication fork dynamics, and DNA repair. Aberrant expression and/or altered separase proteolytic activity are associated with aneuploidy, tumorigenesis, and disease progression. Since genomic instability and clonal evolution are hallmarks of progressing chronic myeloid leukemia (CML), we have comparatively examined separase proteolytic activity in TKI-treated chronic phase CML.
View Article and Find Full Text PDFTightly regulated activity of the transcription factor MYC is essential for orderly cell proliferation. Upon deregulation, MYC elicits and promotes cancer progression. Proteasomal degradation is an essential element of MYC regulation, initiated by phosphorylation at Serine62 (Ser62) of the MB1 region.
View Article and Find Full Text PDFBiol Blood Marrow Transplant
July 2020
The significance of clonal evolution in myelofibrosis (MF) relapse remains poorly understood. Here we performed panel sequencing in paired samples of 30 patients with MF who relapsed after undergoing allogeneic hematopoietic stem cell transplantation (alloSCT). We identified a median of 2 mutations (range, 0 to 12) in a median of 2 genes (range, 0 to 8) before allo-SCT, along with a median of 2 mutations (range, 0 to 12) in 2 genes (range, 0 to 6) at relapse.
View Article and Find Full Text PDFDNA damage and alterations in the DNA damage response (DDR) are critical sources of genetic instability that might be involved in BCR-ABL1 kinase-mediated blastic transformation of chronic myeloid leukemia (CML). Here, increased DNA damage is detected by γH2AX foci analysis in peripheral blood mononuclear cells (PBMCs) of de novo untreated chronic phase (CP)-CML patients ( = 5; 2.5 γH2AX foci per PBMC ± 0.
View Article and Find Full Text PDFReciprocal RUNX1 fusions are traditionally found in up to 10% of acute myeloid leukemia (AML) patients, usually associated with a translocation (8;21)(q22;q22) corresponding to the RUNX1-RUNX1T1 fusion gene. So far, alternative RUNX1 rearrangements have been reported only rarely in AML, and the few reports so far have focused on results based on cytogenetics, fluorescence in situ hybridization, and polymerase chain reaction. Acknowledging the inherent limitations of these diagnostic techniques, the true incidence of rare RUNX1 rearrangements may be underestimated.
View Article and Find Full Text PDFMalignant hematopoietic cells of myelodysplastic syndromes (MDS)/chronic myelomonocytic leukemias (CMML) and acute myeloid leukemias (AML) may be vulnerable to inhibition of poly(ADP ribose) polymerase 1/2 (PARP1/2) and apurinic/apyrimidinic endonuclease 1 (APE1). PARP1/2 and APE1 are critical enzymes involved in single-strand break repair and base excision repair, respectively. Here, we investigated the cytotoxic efficacy of talazoparib and APE1 inhibitor III, inhibitors of PARP1/2 and APE1, in primary CD34+ MDS/CMML cell samples ( = 8; 4 MDS and 4 CMML) and in primary CD34+ or CD34- AML cell samples ( = 18) in comparison to healthy CD34+ donor cell samples ( = 8).
View Article and Find Full Text PDFGiven the vast phenotypic and genetic heterogeneity of acute and chronic myeloid malignancies, hematologists have eagerly awaited the introduction of next-generation sequencing (NGS) into the routine diagnostic armamentarium to enable a more differentiated disease classification, risk stratification, and improved therapeutic decisions. At present, an increasing number of hematologic laboratories are in the process of integrating NGS procedures into the diagnostic algorithms of patients with acute myeloid leukemia (AML), myelodysplastic syndromes (MDS), and myeloproliferative neoplasms (MPNs). Inevitably accompanying such developments, physicians and molecular biologists are facing unexpected challenges regarding the interpretation and implementation of molecular genetic results derived from NGS in myeloid malignancies.
View Article and Find Full Text PDFAccumulation of DNA damage and alteration of the DNA damage response (DDR) are critical features of genetic instability that is presumed to be implicated in the pathogenesis of monoclonal B-cell lymphocytosis (MBL) and chronic lymphocytic leukemia (CLL). Here, we show increased numbers of γH2AX foci, a marker of DNA double-strand breaks (DSB), in CD19+ cells of CLL patients as compared to CD19+ cells of MBL patients and healthy individuals. Furthermore, numerous γH2AX/53BP1 foci in CLL cells suggest activation of error-prone non-homologous end-joining repair mechanisms.
View Article and Find Full Text PDF