Publications by authors named "Johanna Blass"

Surface-grafted polymers can reduce friction between solids in liquids by compensating the normal load with osmotic pressure, but they can also contribute to friction when fluctuating polymers entangle with the sliding counter face. We have measured forces acting on a single fluctuating double-stranded DNA polymer, which is attached to the tip of an atomic force microscope and interacts intermittently with nanometer-scale methylated pores of a self-assembled polystyrene--poly(4-vinylpyridine) membrane. Rare binding of the polymer into the pores is followed by a stretching of the polymer between the laterally moving tip and the surface and by a force-induced detachment.

View Article and Find Full Text PDF

Understanding cells' response to the macroscopic and nanoscale properties of biomaterials requires studies in model systems with the possibility to tailor their mechanical properties and different length scales. Here, we describe an interpenetrating network (IPN) design based on a stiff PEGDA host network interlaced within a soft 4-arm PEG-Maleimide/thiol (guest) network. We quantify the nano- and bulk mechanical behavior of the IPN and the single network hydrogels by single-molecule force spectroscopy and rheological measurements.

View Article and Find Full Text PDF

Progress in our understanding of mechanotransduction events requires noninvasive methods for the manipulation of forces at molecular scale in physiological environments. Inspired by cellular mechanisms for force application (i.e.

View Article and Find Full Text PDF

DNA has become a powerful platform to design functional nanodevices. DNA nanodevices are often composed of self-assembled DNA building blocks that differ significantly from the structure of native DNA. In this study, we present Flow Force Microscopy as a massively parallel approach to study the nanomechanics of DNA self-assemblies on the single-molecular level.

View Article and Find Full Text PDF

Molecular mechanisms of adhesion and friction include the rupture of single and multiple bonds. The strength of adhesion and friction thus depends on the molecular kinetics and cooperative effects in the lifetime of bonds under stress. We measured the rate dependence of friction and adhesion mediated by supramolecular guest-host bonds using atomic force microscopy (AFM).

View Article and Find Full Text PDF

The response of cultured cells to the mechanical properties of hydrogel substrates depends ultimately on the response of single crosslinks to external forces exerted at cell attachment points. We prepared hydrogels by co-polymerization of poly(ethylene glycol diacrylate) (PEGDA) and carboxy poly(ethylene glycol) acrylate (ACPEG-COOH) and confirmed fibroblast spreading on the hydrogel after the ACPEG linker was functionalized with the RGD cell adhesive motif. We performed specific force spectroscopy experiments on the same ACPEG linkers in order to probe the mechanics of single cross-links which mediate the cell attachment and spreading.

View Article and Find Full Text PDF

Water-soluble shape-persistent cyclodextrin (CD) polymers with amino-functionalized end groups were prepared starting from diacetylene-modified cyclodextrin monomers by a combined Glaser coupling/click chemistry approach. Structural perfection of the neutral CD polymers and inclusion complex formation with ditopic and monotopic guest molecules were proven by MALDI-TOF and UV-vis measurements. Small-angle neutron and X-ray (SANS/SAXS) scattering experiments confirm the stiffness of the polymer chains with an apparent contour length of about 130 Å.

View Article and Find Full Text PDF

In single-molecule force spectroscopy, the unbinding force is often used to quantify the interaction strength of single molecular bonds. We analyze force spectroscopy of fast reversible bonds probed in thermodynamic equilibrium by considering the dynamics of force probe and molecular linker. The effect of cantilever and linker dynamics is systematically addressed by measuring the unbinding force of single cyclodextrin inclusion complexes by atomic force spectroscopy for a variety of molecular linkers and varying force probe stiffness.

View Article and Find Full Text PDF

We introduce a molecular toolkit for studying the dynamics in friction and adhesion from the single molecule level to effects of multivalency. As experimental model system we use supramolecular bonds established by the inclusion of ditopic adamantane connector molecules into two surface-bound cyclodextrin molecules, attached to a tip of an atomic force microscope (AFM) and to a flat silicon surface. The rupture force of a single bond does not depend on the pulling rate, indicating that the fast complexation kinetics of adamantane and cyclodextrin are probed in thermal equilibrium.

View Article and Find Full Text PDF

Friction and adhesion between two β-cyclodextrin functionalized surfaces can be switched reversibly by external light stimuli. The interaction between the cyclodextrin molecules attached to the tip of an atomic force microscope and a silicon wafer surface is mediated by complexation of ditopic azobenzene guest molecules. At the single molecule level, the rupture force of an individual complex is 61 ± 10 pN.

View Article and Find Full Text PDF