Research Infrastructures (RIs) are strategic assets facilitating innovation and knowledge advancement across all scientific disciplines. They provide researchers with advanced tools and resources that go beyond individual or institutional capacities and promote collaboration, community-building and the application of scientific standards. Remote and virtual access to RIs enables scientists to use these essential resources without the necessity of being physically present.
View Article and Find Full Text PDFIn the dynamic landscape of scientific research, imaging core facilities are vital hubs propelling collaboration and innovation at the technology development and dissemination frontier. Here, we present a collaborative effort led by Global BioImaging (GBI), introducing international recommendations geared towards elevating the careers of Imaging Scientists in core facilities. Despite the critical role of Imaging Scientists in modern research ecosystems, challenges persist in recognising their value, aligning performance metrics and providing avenues for career progression and job security.
View Article and Find Full Text PDFImages document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However, for scientists wishing to publish obtained images and image-analysis results, there are currently no unified guidelines for best practices.
View Article and Find Full Text PDFBioimaging has now entered the era of big data with faster-than-ever development of complex microscopy technologies leading to increasingly complex datasets. This enormous increase in data size and informational complexity within those datasets has brought with it several difficulties in terms of common and harmonized data handling, analysis, and management practices, which are currently hampering the full potential of image data being realized. Here, we outline a wide range of efforts and solutions currently being developed by the microscopy community to address these challenges on the path towards FAIR bioimaging data.
View Article and Find Full Text PDFComplex living agents consist of cells, which are themselves competent sub-agents navigating physiological and metabolic spaces. Behaviour science, evolutionary developmental biology and the field of machine intelligence all seek to understand the scaling of biological cognition: what enables individual cells to integrate their activities to result in the emergence of a novel, higher-level intelligence with large-scale goals and competencies that belong to it and not to its parts? Here, we report the results of simulations based on the TAME framework, which proposes that evolution pivoted the collective intelligence of cells during morphogenesis of the body into traditional behavioural intelligence by scaling up homeostatic competencies of cells in metabolic space. In this article, we created a minimal system (two-dimensional neural cellular automata) and tested the hypothesis that evolutionary dynamics are sufficient for low-level setpoints of metabolic homeostasis in individual cells to scale up to tissue-level emergent behaviour.
View Article and Find Full Text PDFImages document scientific discoveries and are prevalent in modern biomedical research. Microscopy imaging in particular is currently undergoing rapid technological advancements. However for scientists wishing to publish the obtained images and image analyses results, there are to date no unified guidelines.
View Article and Find Full Text PDFA modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated , quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted.
View Article and Find Full Text PDFThe community-driven initiative ‘ality ssessment and roducibility for Instruments & Images in ght croscopy’ (QUAREP-LiMi) wants to improve reproducibility for light microscopy image data through quality control (QC) management of instruments and images. It aims for a common set of QC guidelines for hardware calibration, image acquisition, management and analysis.
View Article and Find Full Text PDFThe coordination of tissue-level polarity with organism-level polarity is crucial in development, disease, and regeneration. Here, we characterize a new example of large-scale control of dynamic remodeling of body polarity. Exploiting the flexibility of the body plan in regenerating planarians, we used mirror duplication of the primary axis to show how established tissue-level polarity adapts to new organism-level polarity.
View Article and Find Full Text PDFSome animals, such as planaria, can regenerate complex anatomical structures in a process regulated by genetic and biophysical factors, but additional external inputs into regeneration remain to be uncovered. Microbial communities inhabiting metazoan organisms are important for metabolic, immune, and disease processes, but their instructive influence over host structures remains largely unexplored. Here, we show that Aquitalea sp.
View Article and Find Full Text PDFPhysiology (Bethesda)
January 2020
Nervous systems are traditionally thought of as providing sensing and behavioral coordination functions at the level of the whole organism. What is the evolutionary origin of the mechanisms enabling the nervous systems' information processing ability? Here, we review evidence from evolutionary, developmental, and regenerative biology suggesting a deeper, ancestral function of both pre-neural and neural cell-cell communication systems: the long-distance coordination of cell division and differentiation required to create and maintain body-axis symmetries. This conceptualization of the function of nervous system activity sheds new light on the evolutionary transition from the morphologically rudimentary, non-neural Porifera and Placazoa to the complex morphologies of Ctenophores, Cnidarians, and Bilaterians.
View Article and Find Full Text PDFControl of axial polarity during regeneration is a crucial open question. We developed a quantitative model of regenerating planaria, which elucidates self-assembly mechanisms of morphogen gradients required for robust body-plan control. The computational model has been developed to predict the fraction of heteromorphoses expected in a population of regenerating planaria fragments subjected to different treatments, and for fragments originating from different regions along the anterior-posterior and medio-lateral axis.
View Article and Find Full Text PDFAxial patterning during planarian regeneration relies on a transcriptional circuit that confers distinct positional information on the two ends of an amputated fragment. The earliest known elements of this system begin demarcating differences between anterior and posterior wounds by 6 h postamputation. However, it is still unknown what upstream events break the axial symmetry, allowing a mutual repressor system to establish invariant, distinct biochemical states at the anterior and posterior ends.
View Article and Find Full Text PDFObjective: In the presence of inferior myocardial infarction (MI), ST depression (STD) in lead I has been claimed to be accurate for diagnosis of right ventricular (RV) MI. We sought to evaluate this claim and also whether ST Elevation (STE) in lead V1 would be helpful, with or without STD in V2.
Methods: Retrospective study of consecutive inferior STEMI, comparing ECGs of patients with, to those without, RVMI, as determined by angiographic coronary occlusion proximal to the RV marginal branch.
Cytoplasmic flows are an ubiquitous feature of biological systems, in particular in large cells, such as oocytes and eggs in early animal development. Here we show that cytoplasmic flows in starfish oocytes, which can be imaged well with transmission light microscopy, are fully determined by the cortical dynamics during surface contraction waves. We first show that the dynamics of the oocyte surface is highly symmetric around the animal-vegetal axis.
View Article and Find Full Text PDFPlanarian behavior, physiology, and pattern control offer profound lessons for regenerative medicine, evolutionary biology, morphogenetic engineering, robotics, and unconventional computation. Despite recent advances in the molecular genetics of stem cell differentiation, this model organism's remarkable anatomical homeostasis provokes us with truly fundamental puzzles about the origin of large-scale shape and its relationship to the genome. In this review article, we first highlight several deep mysteries about planarian regeneration in the context of the current paradigm in this field.
View Article and Find Full Text PDFA Supplementary Information file from a different paper was inadvertently published with the original version of this Article. This file was replaced with the correct Supplementary Information file on 24 October 2017.
View Article and Find Full Text PDFSurface contraction waves (SCWs) in oocytes and embryos lead to large-scale shape changes coupled to cell cycle transitions and are spatially coordinated with the cell axis. Here, we show that SCWs in the starfish oocyte are generated by a traveling band of myosin II-driven cortical contractility. At the front of the band, contractility is activated by removal of cdk1 inhibition of the RhoA/RhoA kinase/myosin II signaling module, while at the rear, contractility is switched off by negative feedback originating downstream of RhoA kinase.
View Article and Find Full Text PDFBackground: ST-segment elevation (STE) due to inferior STE myocardial infarction (STEMI) may be misdiagnosed as pericarditis. Conversely, this less life-threatening etiology of ST elevation may be confused for inferior STEMI. We sought to determine if the presence of any ST-segment depression in lead aVL would differentiate inferior STEMI from pericarditis.
View Article and Find Full Text PDF