Publications by authors named "Johanna Arnorsdottir"

Aqualysin I, is a subtilisin-like serine proteinase, from the thermophilic bacterium Thermus aquaticus. It is predicted that the enzyme contains a salt bridge, D17-R259, connecting the N- and C-terminal regions of the enzyme. Previously we reported on the stabilizing effect of the incorporation of a salt bridge at a corresponding site in VPR, a related cold adapted enzyme from a marine Vibrio sp.

View Article and Find Full Text PDF

Structural comparisons of VPR, a subtilisin-like serine proteinase from a psychrotrophic Vibrio species and a thermophilic homologue, aqualysin I, have led us to hypothesize about the roles of different residues in the temperature adaptation of the enzymes. Some of these hypotheses are now being examined by analysis of mutants of the enzymes. The selected substitutions are believed to increase the stability of the cold adapted enzyme based on structural analysis of the thermostable structure.

View Article and Find Full Text PDF

A cold adapted subtilisin-like serine proteinase from a Vibrio species is two amino acids shorter at the N-terminus than related enzymes adapted to higher temperatures and has a 15 residues' C-terminal extension relative to the highly homologous thermophilic enzyme aqualysin I from Thermus aquaticus. These enzymes are produced as pro-enzymes with an N-terminal chaperone sequence for correct folding and a C-terminal signal peptide for secretion, which are subsequently cleaved off by autocatalysis to give the mature enzyme. A truncated form of the Vibrio proteinase where the C-terminal extension was removed and two residues near the N-terminus were substituted with proline, to resemble the N- and C-terminal regions in aqualysin I, resulted in increased thermostability and diminished catalytic efficiency.

View Article and Find Full Text PDF

A subtilisin-like serine proteinase from a psychrotrophic Vibrio species (VPR) shows distinct cold adapted traits regarding stability and catalytic properties, while sharing high sequence homology with enzymes adapted to higher temperatures. Based on comparisons of sequences and examination of 3D structural models of VPR and related enzymes of higher temperature origin, five sites were chosen to be subject to site directed mutagenesis. Three serine residues were substituted with alanine and two residues in loops were substituted with proline.

View Article and Find Full Text PDF

The crystal structure of a subtilisin-like serine proteinase from the psychrotrophic marine bacterium, Vibrio sp. PA-44, was solved by means of molecular replacement and refined at 1.84 A.

View Article and Find Full Text PDF

The gene encoding a subtilisin-like serine proteinase in the psychrotrophic Vibrio sp. PA44 has been successfully cloned, sequenced and expressed in Escherichia coli. The gene is 1593 basepairs and encodes a precursor protein of 530 amino acid residues with a calculated molecular mass of 55.

View Article and Find Full Text PDF