The specific aim in this study was to understand the effect of critical process parameters on the solid form composition of model drug compounds during hot melt extrusion using in-line Raman spectroscopy combined with Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) modeling for semi-quantitative kinetic profiling. It was observed that the hydrate and anhydrate solid forms of two model drugs in the melts of nitrofurantoin (NF):polyethylene oxide (PEO) and piroxicam (PRX):PEO could be resolved from a MCR-ALS model without an external calibration dataset. Based on this model, the influence of two critical process parameters (shear and temperature) on the solid form composition could be evaluated in a real-time mode and the kinetics of complex transformation pathways could be explored.
View Article and Find Full Text PDFApplication of additive manufacturing techniques (3D printing) for mass-customized products has boomed in the recent years. In pharmaceutical industry and research, the interest has grown particularly with the future scenario of more personalized medicinal products. Understanding a broad range of material properties and process behavior of the drug-excipient combinations is necessary for successful 3D printing of dosage forms.
View Article and Find Full Text PDFPorous implants or implantable scaffolds used for tissue regeneration can encourage tissue growth inside the implant and provide extended drug release. Water-soluble polymers incorporated into a biodegradable or inert implant matrix may leach out upon contact with biological fluids and thereby gradually increasing the porosity of the implant and simultaneously release drug from the implant matrix. Different molecular weight grades of methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC) were mixed with polylactide and extruded into model implants containing nitrofurantoin as a model drug.
View Article and Find Full Text PDFPurpose: Many future drug products will be based on innovative manufacturing solutions, which will increase the need for a thorough understanding of the interplay between drug material properties and processability. In this study, hot melt extrusion of a drug-drug mixture with minimal amount of polymeric excipient was investigated.
Methods: Using indomethacin-cimetidine as a model drug-drug system, processability of physical mixtures with and without 5% (w/w) of polyethylene oxide (PEO) were studied using Differential Scanning Calorimetry (DSC) and Small Amplitude Oscillatory Shear (SAOS) rheometry.
Purpose: In this study, the electrospinnability of poly(lactic-co-glycolic acid) (PLGA) solutions was investigated, with a focus on understanding the influence of molecular weight of PLGA, solvent type and solvent composition on the physical properties of electrospun nanofibers.
Method: Various solvents were tested to dissolve two PLGA grades (50 KDa-RG755, 100 KDa-RG750). The viscoelasticity, surface tension, and evaporation rate of the PLGA solutions were characterized prior to the electrospinning process.
Hot-melt extrusion and 3D printing are enabling manufacturing approaches for patient-centred medicinal products. Hot-melt extrusion is a flexible and continuously operating technique which is a crucial part of a typical processing cycle of printed medicines. In this work we use hot-melt extrusion for manufacturing of medicinal films containing indomethacin (IND) and polycaprolactone (PCL), extruded strands with nitrofurantoin monohydrate (NFMH) and poly (ethylene oxide) (PEO), and feedstocks for 3D printed dosage forms with nitrofurantoin anhydrate (NFAH), hydroxyapatite (HA) and poly (lactic acid) (PLA).
View Article and Find Full Text PDFThis work describes an approach to modify the release of active compound from a 3D printed model drug product geometry intended for flexible dosing and precision medication. The production of novel polylactic acid and hydroxypropyl methylcellulose based feed materials containing nitrofurantoin for 3D printing purposes is demonstrated. Nitrofurantoin, Metolose® and polylactic acid were successfully co-extruded with up to 40% Metolose® content, and subsequently 3D printed into model disk geometries (ø10mm, h=2mm).
View Article and Find Full Text PDFThe flow properties of drug-polymer mixtures have a significant influence on their processability when using techniques such as hot melt extrusion (HME). Suitable extrusion temperature and screw speed to be used in laboratory scale HME were evaluated for mixtures containing 30% of paracetamol (PRC), ibuprofen (IBU), or indomethacin (IND), and 70% of polyethylene oxide, by using small amplitude oscillatory shear rheology. The initial evaluation of the drug:polyethylene oxide solubility was estimated by differential scanning calorimetry of the physical mixtures containing a wide range of weight fractions of the drug substances.
View Article and Find Full Text PDFFuture manufacturing of pharmaceuticals will involve innovative use of polymeric excipients. Hot melt extrusion (HME) is an already established manufacturing technique and several products based on HME are on the market. Additionally, processing based on, e.
View Article and Find Full Text PDFThe aim of the present work was to investigate the potential of three-dimensional (3D) printing as a manufacturing method for products intended for personalized treatments by exploring the production of novel polylactide-based feedstock materials for 3D printing purposes. Nitrofurantoin (NF) and hydroxyapatite (HA) were successfully mixed and extruded with up to 30% drug load with and without addition of 5% HA in polylactide strands, which were subsequently 3D-printed into model disc geometries (10 × 2 mm). X-ray powder diffraction analysis showed that NF maintained its anhydrate solid form during the processing.
View Article and Find Full Text PDF