Publications by authors named "Johann Rohwer"

The plastidic 2-C-methylerythritol 4-phosphate (MEP) pathway supplies the precursors of a large variety of essential plant isoprenoids, but its regulation is still not well understood. Using metabolic control analysis (MCA), we examined the first enzyme of this pathway, 1-deoxyxylulose 5-phosphate synthase (DXS), in multiple grey poplar ( × ) lines modified in their DXS activity. Single leaves were dynamically labeled with CO in an illuminated, climate-controlled gas exchange cuvette coupled to a proton transfer reaction mass spectrometer, and the carbon flux through the MEP pathway was calculated.

View Article and Find Full Text PDF

Computational biology is a diverse research field that has gained increasing importance over the last two decades. Broadly, it aims to apply computational approaches to advance our understanding of biological systems. This can take place on multiple levels, for example, by creating computational models of specific biological systems, by developing algorithms that assist in the analysis of experimental data, or by investigating fundamental biological design principles through modelling.

View Article and Find Full Text PDF

A critical feature of the cellular antioxidant response is the induction of gene expression by redox-sensitive transcription factors. In many cells, activating these transcription factors is a dynamic process involving multiple redox steps, but it is unclear how these dynamics should be measured. Here, we show how the dynamic profile of the Schizosaccharomyces pombe Pap1 transcription factor is quantifiable by three parameters: signal amplitude, signal time and signal duration.

View Article and Find Full Text PDF

Thioredoxin, glutaredoxin and peroxiredoxin systems play central roles in redox regulation, signaling and metabolism in cells. In these systems, reducing equivalents from NAD(P)H are transferred by coupled thiol-disulfide exchange reactions to redoxins which then reduce a wide array of targets. However, the characterization of redoxin activity has been unclear, with redoxins regarded as enzymes in some studies and redox metabolites in others.

View Article and Find Full Text PDF

Peroxiredoxins play central roles in the detoxification of reactive oxygen species and have been modelled across multiple organisms using a variety of kinetic methods. However, the peroxiredoxin dimer-to-decamer transition has been underappreciated in these studies despite the 100-fold difference in activity between these forms. This is due to the lack of available kinetics and a theoretical framework for modelling this process.

View Article and Find Full Text PDF

Infectious diseases are a significant health burden for developing countries, particularly with the rise of multidrug resistance. There is an urgent need to elucidate the factors underlying the persistence of pathogens such as Mycobacterium tuberculosis, Plasmodium falciparum and Trypanosoma brucei. In contrast to host cells, these pathogens traverse multiple and varied redox environments during their infectious cycles, including exposure to high levels of host-derived reactive oxygen species.

View Article and Find Full Text PDF

Dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP) serves as the universal C5 precursors of isoprenoid biosynthesis in plants. These compounds are formed by the last step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, catalyzed by (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase (HDR). In this study, we investigated the major HDR isoforms of two woody plant species, Norway spruce (Picea abies) and gray poplar (Populus × canescens), to determine how they regulate isoprenoid formation.

View Article and Find Full Text PDF
Article Synopsis
  • * To address these challenges, EnzymeML is an XML-based markup language designed to standardize storage and sharing of enzymatic data, enhancing its findability and accessibility (the FAIR principles).
  • * The EnzymeML toolbox has been tested in six scenarios, demonstrating its effectiveness in facilitating communication between various platforms and promoting collaboration within the scientific community, with all resources freely available online.
View Article and Find Full Text PDF

Computational models have great potential to accelerate bioscience, bioengineering, and medicine. However, it remains challenging to reproduce and reuse simulations, in part, because the numerous formats and methods for simulating various subsystems and scales remain siloed by different software tools. For example, each tool must be executed through a distinct interface.

View Article and Find Full Text PDF

Plantaricin 423 is produced by Lactobacillus plantarum 423 using the biosynthetic operon located on the 8,188-bp plasmid pPLA4. As with many class IIa bacteriocin operons, the operon carries biosynthetic genes (, precursor peptide; , immunity; , accessory; and , ABC transporter) but does not carry local regulatory genes. Little is known about the regulatory mechanisms involved in the expression of the apparently regulationless class IIa bacteriocins, such as plantaricin 423.

View Article and Find Full Text PDF

The glycine conjugation pathway in humans is involved in the metabolism of natural substrates and the detoxification of xenobiotics. The interactions between the various substrates in this pathway and their competition for the pathway enzymes are currently unknown. The pathway consists of a mitochondrial xenobiotic/medium-chain fatty acid: coenzyme A (CoA) ligase (ACSM2B) and glycine -acyltransferase (GLYAT).

View Article and Find Full Text PDF

The methylerythritol 4-phosphate (MEP) pathway of isoprenoid biosynthesis produces chlorophyll side chains and compounds that function in resistance to abiotic stresses, including carotenoids, and isoprene. Thus we investigated the effects of moderate and severe drought on MEP pathway function in the conifer , a boreal species at risk under global warming trends. Although moderate drought treatment reduced the photosynthetic rate by over 70%, metabolic flux through the MEP pathway was reduced by only 37%.

View Article and Find Full Text PDF

The thioredoxin system plays a central role in intracellular redox regulation and its dysregulation is associated with a number of pathologies. However, the connectivity within this system poses a significant challenge for quantification and consequently several disparate measures have been used to characterize the system. For in vitro studies, the thioredoxin system flux has been measured by NADPH oxidation while the thioredoxin redox state has been used to estimate the activity of the system in vivo.

View Article and Find Full Text PDF

Background: Terpenoids are of high interest as chemical building blocks and pharmaceuticals. In microbes, terpenoids can be synthesized via the methylerythritol phosphate (MEP) or mevalonate (MVA) pathways. Although the MEP pathway has a higher theoretical yield, metabolic engineering has met with little success because the regulation of the pathway is poorly understood.

View Article and Find Full Text PDF

High-level behaviour of metabolic systems results from the properties of, and interactions between, numerous molecular components. Reaching a complete understanding of metabolic behaviour based on the system's components is therefore a difficult task. This problem can be tackled by constructing and subsequently analysing kinetic models of metabolic pathways since such models aim to capture all the relevant properties of the system components and their interactions.

View Article and Find Full Text PDF

A key component of enzyme function experiments is reporting of considerable metadata, to allow other researchers to replicate, interpret properly or use fully the results. This paper evaluates the completeness of enzyme function data reporting for reproducibility. We present a detailed examination of 11 recent papers (and their supplementary material) from two leading journals.

View Article and Find Full Text PDF

Standards for reporting enzymology data (STRENDA) DB is a validation and storage system for enzyme function data that incorporates the STRENDA Guidelines. It provides authors who are preparing a manuscript with a user-friendly, web-based service that checks automatically enzymology data sets entered in the submission form that they are complete and valid before they are submitted as part of a publication to a journal.

View Article and Find Full Text PDF

Summary: PySCeSToolbox is an extension to the Python Simulator for Cellular Systems (PySCeS) that includes tools for performing generalized supply-demand analysis, symbolic metabolic control analysis, and a framework for investigating the kinetic and thermodynamic aspects of enzyme-catalyzed reactions. Each tool addresses a different aspect of metabolic behaviour, control, and regulation; the tools complement each other and can be used in conjunction to better understand higher level system behaviour.

Availability And Implementation: PySCeSToolbox is available on Linux, Mac OS X and Windows.

View Article and Find Full Text PDF

Redox signaling is now recognized as an important regulatory mechanism for a number of cellular processes including the antioxidant response, phosphokinase signal transduction and redox metabolism. While there has been considerable progress in identifying the cellular machinery involved in redox signaling, quantitative measures of redox signals have been lacking, limiting efforts aimed at understanding and comparing redox signaling under normoxic and pathogenic conditions. Here we have outlined some of the accepted principles for redox signaling, including the description of hydrogen peroxide as a signaling molecule and the role of kinetics in conferring specificity to these signaling events.

View Article and Find Full Text PDF

Background: Generalised supply-demand analysis is a conceptual framework that views metabolism as a molecular economy. Metabolic pathways are partitioned into so-called supply and demand blocks that produce and consume a particular intermediate metabolite. By studying the response of these reaction blocks to perturbations in the concentration of the linking metabolite, different regulatory routes of interaction between the metabolite and its supply and demand blocks can be identified and their contribution quantified.

View Article and Find Full Text PDF

Glutathionylation plays a central role in cellular redox regulation and anti-oxidative defence. Grx (Glutaredoxins) are primarily responsible for reversing glutathionylation and their activity therefore affects a range of cellular processes, making them prime candidates for computational systems biology studies. However, two distinct kinetic mechanisms involving either one (monothiol) or both (dithiol) active-site cysteines have been proposed for their deglutathionylation activity and initial studies predicted that computational models based on either of these mechanisms will have different structural and kinetic properties.

View Article and Find Full Text PDF

The 2-C-methylerythritol 4-phosphate (MEP) pathway supplies precursors for plastidial isoprenoid biosynthesis including carotenoids, redox cofactor side chains, and biogenic volatile organic compounds. We examined the first enzyme of this pathway, 1-deoxyxylulose 5-phosphate synthase (DXS), using metabolic control analysis. Multiple Arabidopsis (Arabidopsis thaliana) lines presenting a range of DXS activities were dynamically labeled with CO in an illuminated, climate-controlled, gas exchange cuvette.

View Article and Find Full Text PDF

Several enzymes have been described that undergo both allosteric and covalent regulation, but, to date, there exists no succinct kinetic description that is able to account for both of these mechanisms of regulation. Muscle glycogen synthase, an enzyme implicated in the pathogenesis of several metabolic diseases, is activated by glucose 6-phosphate and inhibited by ATP and phosphorylation at multiple sites. A kinetic description of glycogen synthase could provide insight into the relative importance of these modifiers.

View Article and Find Full Text PDF

The importance of kinetic modeling for understanding the control and regulation of complex metabolic networks is increasingly being recognized. Kinetic models encapsulate the available kinetic information of all the enzymes in a pathway, and then calculate the complex behavior that emerges from the interactions between these network components. Kinetic models are particularly useful because they can simulate untested scenarios and thus explore pathway behavior beyond the realm of what is experimentally available or currently feasible.

View Article and Find Full Text PDF