We report on the energy dependence of the photoemission time delay from the single-element layered dielectric HOPG (highly oriented pyrolytic graphite). This system offers the unique opportunity to directly observe the Eisenbud-Wigner-Smith (EWS) time delays related to the bulk electronic band structure without being strongly perturbed by ubiquitous effects of transport, screening, and multiple scattering. We find the experimental streaking time shifts to be sensitive to the modulation of the density of states in the high-energy region ( ≈ 100 eV) of the band structure.
View Article and Find Full Text PDFElectro-optical photonic integrated circuits (PICs) based on lithium niobate (LiNbO) have demonstrated the vast capabilities of materials with a high Pockels coefficient. They enable linear and high-speed modulators operating at complementary metal-oxide-semiconductor voltage levels to be used in applications including data-centre communications, high-performance computing and photonic accelerators for AI. However, industrial use of this technology is hindered by the high cost per wafer and the limited wafer size.
View Article and Find Full Text PDFPhotonic integrated circuits have the potential to pervade into multiple applications traditionally limited to bulk optics. Of particular interest for new applications are ferroelectrics such as Lithium Niobate, which exhibit a large Pockels effect, but are difficult to process via dry etching. Here we demonstrate that diamond-like carbon (DLC) is a superior material for the manufacturing of photonic integrated circuits based on ferroelectrics, specifically LiNbO.
View Article and Find Full Text PDFThe availability of thin-film lithium niobate on insulator (LNOI) and advances in processing have led to the emergence of fully integrated LiNbO electro-optic devices. Yet to date, LiNbO photonic integrated circuits have mostly been fabricated using non-standard etching techniques and partially etched waveguides, that lack the reproducibility achieved in silicon photonics. Widespread application of thin-film LiNbO requires a reliable solution with precise lithographic control.
View Article and Find Full Text PDFEarly works and recent advances in thin-film lithium niobate (LiNbO) on insulator have enabled low-loss photonic integrated circuits, modulators with improved half-wave voltage, electro-optic frequency combs and on-chip electro-optic devices, with applications ranging from microwave photonics to microwave-to-optical quantum interfaces. Although recent advances have demonstrated tunable integrated lasers based on LiNbO (refs. ), the full potential of this platform to demonstrate frequency-agile, narrow-linewidth integrated lasers has not been achieved.
View Article and Find Full Text PDFThe ability to amplify optical signals is of pivotal importance across science and technology typically using rare-earth-doped fibres or gain media based on III-V semiconductors. A different physical process to amplify optical signals is to use the Kerr nonlinearity of optical fibres through parametric interactions. Pioneering work demonstrated continuous-wave net-gain travelling-wave parametric amplification in fibres, enabling, for example, phase-sensitive (that is, noiseless) amplification, link span increase, signal regeneration and nonlinear phase noise mitigation.
View Article and Find Full Text PDFFrequency modulated continuous wave laser ranging (FMCW LiDAR) enables distance mapping with simultaneous position and velocity information, is immune to stray light, can achieve long range, operate in the eye-safe region of 1550 nm and achieve high sensitivity. Despite its advantages, it is compounded by the simultaneous requirement of both narrow linewidth low noise lasers that can be precisely chirped. While integrated silicon-based lasers, compatible with wafer scale manufacturing in large volumes at low cost, have experienced major advances and are now employed on a commercial scale in data centers, and impressive progress has led to integrated lasers with (ultra) narrow sub-100 Hz-level intrinsic linewidth based on optical feedback from photonic circuits, these lasers presently lack fast nonthermal tuning, i.
View Article and Find Full Text PDFErbium-doped fiber amplifiers revolutionized long-haul optical communications and laser technology. Erbium ions could provide a basis for efficient optical amplification in photonic integrated circuits but their use remains impractical as a result of insufficient output power. We demonstrate a photonic integrated circuit-based erbium amplifier reaching 145 milliwatts of output power and more than 30 decibels of small-signal gain-on par with commercial fiber amplifiers and surpassing state-of-the-art III-V heterogeneously integrated semiconductor amplifiers.
View Article and Find Full Text PDFLaser-based ranging (LiDAR) - already ubiquitously used in industrial monitoring, atmospheric dynamics, or geodesy - is a key sensor technology. Coherent laser ranging, in contrast to time-of-flight approaches, is immune to ambient light, operates continuous-wave allowing higher average powers, and yields simultaneous velocity and distance information. State-of-the-art coherent single laser-detector architectures reach hundreds of kilopixel per second sampling rates, while emerging applications - autonomous driving, robotics, and augmented reality - mandate megapixel per second point sampling to support real-time video-rate imaging.
View Article and Find Full Text PDFA photonic dimer composed of two evanescently coupled high- microresonators is a fundamental element of multimode soliton lattices. It has demonstrated a variety of emergent nonlinear phenomena, including supermode soliton generation and soliton hopping. Here, we present another aspect of dissipative soliton generation in coupled resonators, revealing the advantages of this system over conventional single-resonator platforms.
View Article and Find Full Text PDFSilicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (SiN) microresonators on a monolithic silicon substrate.
View Article and Find Full Text PDFSpectral domain optical coherence tomography (OCT) is a widely employed, minimally invasive bio-medical imaging technique, which requires a broadband light source, typically implemented by super-luminescent diodes. Recent advances in soliton based photonic integrated frequency combs (soliton microcombs) have enabled the development of low-noise, broadband chipscale frequency comb sources, whose potential for OCT imaging has not yet been unexplored. Here, we explore the use of dissipative Kerr soliton microcombs in spectral domain OCT and show that, by using photonic chipscale SiN resonators in conjunction with 1300 nm pump lasers, spectral bandwidths exceeding those of commercial OCT sources are possible.
View Article and Find Full Text PDFWe present aspects of emerging optical activity in thin racemic 1,1'-Bi-2-naphthol films upon irradiation with circularly polarized light and subsequent resonant two-photon absorption in the sample. Thorough analysis of the sample morphology is conducted by means of (polarization-resolved) optical microscopy and scanning electron microscopy (SEM). The influence of crystallization on the nonlinear probing technique (second harmonic generation circular dichroism [SHG-CD]) is investigated.
View Article and Find Full Text PDFCoherent ranging, also known as frequency-modulated continuous-wave (FMCW) laser-based light detection and ranging (lidar) is used for long-range three-dimensional distance and velocimetry in autonomous driving. FMCW lidar maps distance to frequency using frequency-chirped waveforms and simultaneously measures the Doppler shift of the reflected laser light, similar to sonar or radar and coherent detection prevents interference from sunlight and other lidar systems. However, coherent ranging has a lower acquisition speed and requires precisely chirped and highly coherent laser sources, hindering widespread use of the lidar system and impeding parallelization, compared to modern time-of-flight ranging systems that use arrays of individual lasers.
View Article and Find Full Text PDFWe report measurements of the temporal dynamics of the valence band photoemission from the magnesium (0001) surface across the resonance of the Γ[over ¯] surface state at 134 eV and link them to observations of high-resolution synchrotron photoemission and numerical calculations of the time-dependent Schrödinger equation using an effective single-electron model potential. We observe a decrease in the time delay between photoemission from delocalized valence states and the localized core orbitals on resonance. Our approach to rigorously link excitation energy-resolved conventional steady-state photoemission with attosecond streaking spectroscopy reveals the connection between energy-space properties of bound electronic states and the temporal dynamics of the fundamental electronic excitations underlying the photoelectric effect.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2019
The interest in enantioseparation and enantiopurification of chiral molecules has been drastically increasing over the past decades, since these are important steps in various disciplines such as pharmaceutical industry, asymmetric catalysis, and chiral sensing. By exposing racemic samples of BINOL (1,1'-bi-2-naphthol) coated onto achiral glass substrates to circularly polarized light, we unambiguously demonstrate that by controlling the handedness of circularly polarized light, preferential desorption of enantiomers can be achieved. There are currently no mechanisms known that would describe this phenomenon.
View Article and Find Full Text PDFUltrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump-probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton.
View Article and Find Full Text PDFRecent advances in the development of attosecond soft x-ray sources toward photon wavelengths below 10 nm are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. We demonstrate that current attosecond experiments in the sub-200-eV range benefit from these improved optics. We present our achievements in utilizing ion-beam-deposited chromium/scandium (Cr/Sc) multilayer mirrors, optimized by tailored material dependent deposition and interface polishing, for the generation of single attosecond pulses from a high-harmonic cut-off spectrum at a central energy of 145 eV.
View Article and Find Full Text PDFWe demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition. Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. The results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.
View Article and Find Full Text PDF