Publications by authors named "Johann Pototschnig"

In this work, we reexamine the Dailey-Townes model by systematically investigating the electric field gradient (EFG) in various chlorine compounds, dihalogens, and the uranyl ion (). Through the use of relativistic molecular calculations and projection analysis, we decompose the EFG expectation value in terms of atomic reference orbitals. We show how the Dailey-Townes model can be seen as an approximation to our projection analysis.

View Article and Find Full Text PDF

We present the development and implementation of relativistic coupled cluster linear response theory (CC-LR), which allows the determination of molecular properties arising from time-dependent or time-independent electric, magnetic, or mixed electric-magnetic perturbations (within a common gauge origin for the magnetic properties) as well as taking into account the finite lifetime of excited states in the framework of damped response theory. We showcase our implementation, which is capable to offload the computationally intensive tensor contractions characteristic of coupled cluster theory onto graphical processing units, in the calculation of (a) frequency-(in)dependent dipole-dipole polarizabilities of IIB atoms and selected diatomic molecules, with a particular emphasis on the calculation of valence absorption cross sections for the I molecule; (b) indirect spin-spin coupling constants for benchmark systems such as the hydrogen halides (HX, X = F-I) as well the HSe-HO dimer as a prototypical system containing hydrogen bonds; and (c) optical rotations at the sodium D line for hydrogen peroxide analogues (HY, Y = O, S, Se, Te). Thanks to this implementation, we are able to show the similarities in performance, but often the significant discrepancies, between CC-LR and approximate methods such as density functional theory.

View Article and Find Full Text PDF

In the year 1933, Herzberg and Teller realized that the potential energy surface of a triatomic, linear molecule splits into two as soon as the molecule is bent. The phenomenon, later dubbed the Renner-Teller effect due to the detailed follow-up work of Renner on the subject, describes the coupling of a symmetry-reducing molecular vibration with degenerate electronic states. In this article, we show that a very similar type of nonadiabatic coupling can occur for certain translational degrees of freedom of diatomic, electronically degenerate molecules when trapped in a nearly spherical or cylindrical quantum confinement, e.

View Article and Find Full Text PDF

We report an investigation of the low-lying excited states of the YbF molecule-a candidate molecule for experimental measurements of the electron electric dipole moment-with 2-component based multi-reference configuration interaction (MRCI), equation of motion coupled cluster (EOM-CCSD) and the extrapolated intermediate Hamiltonian Fock-space coupled cluster (XIHFS-CCSD). Specifically, we address the question of the nature of these low-lying states in terms of configurations containing filled or partially-filled Yb 4f shells. We show that while it does not appear possible to carry out calculations with both kinds of configurations contained in the same active space, reliable information can be extracted from different sectors of Fock space-that is, by performing electron attachment and detachment IHFS-CCSD and EOM-CCSD calculation on the closed-shell YbF and YbF species, respectively.

View Article and Find Full Text PDF

Metal nanoclusters can be synthesized in various sizes and shapes and are typically protected with ligands to stabilize them. These ligands can also be used to tune the plasmonic properties of the clusters as the absorption spectrum of a protected cluster can be significantly altered compared to the bare cluster. In this paper, we computationally investigate the influence of thiolate ligands on the plasmonic intensity for silver, gold and alloy clusters.

View Article and Find Full Text PDF

In this paper, we report reimplementation of the core algorithms of relativistic coupled cluster theory aimed at modern heterogeneous high-performance computational infrastructures. The code is designed for parallel execution on many compute nodes with optional GPU coprocessing, accomplished via the new ExaTENSOR back end. The resulting ExaCorr module is primarily intended for calculations of molecules with one or more heavy elements, as relativistic effects on the electronic structure are included from the outset.

View Article and Find Full Text PDF

The 0.4 K internal temperature of superfluid helium nanodroplets is believed to guarantee a corresponding ground-state population of dopant atoms and molecules inside this cryogenic matrix. We have recorded 6s ← 5p excitation spectra of indium atoms in helium droplets and found two absorption bands separated by about 2000 cm, a value close to the spin-orbit (SO) splitting of the In P ground state.

View Article and Find Full Text PDF

The 6p P ← 6s S and 6p P ← 6s S transitions (D lines) of gold atoms embedded in superfluid helium nanodroplets have been investigated using resonant two-photon ionization spectroscopy. Both transitions are strongly blue-shifted and broadened due to the repulsive interaction between the Au valence electron and the surrounding helium. The in-droplet D lines are superimposed by the spectral signature of Au atoms relaxed into the metastable D states.

View Article and Find Full Text PDF

Electronic excitations of an electron bound to an alkali metal ion inside a droplet of superfluid He are computed via a combination of helium density functional theory and the numerical integration of the Schrödinger equation for a single electron in a modified, He density dependent atomic pseudopotential. The application of a spectral method to the radial part of the valence electron wavefunction allows the computation of highly excited Rydberg states. For low principal quantum numbers, the energy required to push the electron outward is larger than the solvation energy of the ion.

View Article and Find Full Text PDF

We investigate the properties of alkali-alkaline earth diatomic molecules in the lowest Σ(+) states of the doublet and quartet multiplicity by ab initio calculations. In all sixteen cases studied, the permanent electric dipole moment points in opposite directions for the two spin states. This peculiarity can be explained by molecular orbital theory.

View Article and Find Full Text PDF

We present a thorough theoretical and experimental study of the electronic structure of RbCa. The mixed alkali-alkaline earth molecule RbCa was formed on superfluid helium nanodroplets. Excited states of the molecule in the range of 13 000-23 000 cm were recorded by resonance enhanced multi-photon ionization time-of-flight spectroscopy.

View Article and Find Full Text PDF

Excited states and the ground state of the diatomic molecule RbSr were calculated by post Hartree-Fock molecular orbital theory up to 22 000 cm(-1). We applied a multireference configuration interaction calculation based on multiconfigurational self-consistent field wave functions. Both methods made use of effective core potentials and core polarization potentials.

View Article and Find Full Text PDF

We present a combined experimental and theoretical study of the RbSr molecule. The experimental approach is based on the formation of RbSr molecules on helium nanodroplets. Utilizing two-photon ionization spectroscopy, an excitation spectrum ranging from 11,600 up to 23,000 cm(-1) was recorded.

View Article and Find Full Text PDF

We report an experimental investigation of RbSr molecules attached to helium nanodroplets. The molecules are prepared on the surface of helium droplets by utilizing a sequential pickup scheme. We provide a detailed analysis of the excitation spectrum in the wavelength range 11,600-23,000 cm(-1).

View Article and Find Full Text PDF

The interaction of an electronically excited, single chromium (Cr) atom with superfluid helium nanodroplets of various size (10 to 2000 helium (He) atoms) is studied with helium density functional theory. Solvation energies and pseudo-diatomic potential energy surfaces are determined for Cr in its ground state as well as in the y(7)P, a(5)S, and y(5)P excited states. The necessary Cr-He pair potentials are calculated by standard methods of molecular orbital-based electronic structure theory.

View Article and Find Full Text PDF

The interaction between He and Cr is investigated by means of post-Hartree-Fock molecular orbital theory. We analyze the influence of the van der Waals forces on the complex electronic structure of the chromium atom, starting with its septet manifold and cover the first few electronically excited states up to 30 000 cm(-1). For the sake of a direct comparison with ongoing experiments on Cr-doped helium nanodroplets we extend our analysis to selected states of the quintet manifold in order to explain a non-radiating relaxation from y (7)P(o) to z (5)P(o).

View Article and Find Full Text PDF

We report on the formation of mixed alkali-alkaline earth molecules (LiCa) on helium nanodroplets and present a comprehensive experimental and theoretical study of the ground and excited states of LiCa. Resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) spectroscopy and laser induced fluorescence (LIF) spectroscopy were used for the experimental investigation of LiCa from 15000 to 25500 cm(-1). The 4(2)Σ(+) and 3(2)Π states show a vibrational structure accompanied by distinct phonon wings, which allows us to determine molecular parameters as well as to study the interaction of the molecule with the helium droplet.

View Article and Find Full Text PDF

We report on the spectroscopic investigation of lithium atoms and lithium dimers in their triplet manifold on the surface of helium nanodroplets (He(N)). We present the excitation spectrum of the 3p ← 2s and 3d ← 2s two-photon transitions for single Li atoms on He(N). The atoms are excited from the 2S(Σ) ground state into Δ, Π, and Σ pseudodiatomic molecular substates.

View Article and Find Full Text PDF