Background: Genetic processes shape the modern-day distribution of genetic variation within and between populations and can provide important insights into the underlying mechanisms of evolution. The resulting genetic variation is often unequally partitioned within species' distribution range and especially large differences can manifest at the range limit, where population fragmentation and isolation play a crucial role in species survival. Despite several molecular studies investigating the genetic diversity and differentiation of European Alpine mountain forests, the climatic and demographic constrains which influence the genetic processes are often unknown.
View Article and Find Full Text PDFDisentangling the origin of species-genetic diversity correlations (SGDCs) is a challenging task that provides insight into the way that neutral and adaptive processes influence diversity at multiple levels. Genetic and species diversity are comprised by components that respond differently to the same ecological processes. Thus, it can be useful to partition species and genetic diversity into their different components to infer the mechanisms behind SGDCs.
View Article and Find Full Text PDFLocal adaptation in tree species has been documented through a long history of common garden experiments where functional traits (height, bud phenology) are used as proxies for fitness. However, the ability to identify genes or genomic regions related to adaptation to climate requires the evaluation of traits that precisely reflect how and when climate exerts selective constraints. We combine dendroecology with association genetics to establish a link between genotypes, phenotypes and interannual climatic fluctuations.
View Article and Find Full Text PDFA dynamic systems model of organic waste management for the province of Quebec, Canada, was built. Six distinct modules taking into account social, economical and environmental issues and perspectives were included. Five scenarios were designed and tested to identify the potential consequences of different governmental and demographic combinations of decisions over time.
View Article and Find Full Text PDFOur goals were to quantify how non-embolism-inducing pressure gradients influence trunk sapwood specific conductivity (k(s)) and to compare the impacts of constant and varying pressure gradients on k(s) with KCl and H2O as the perfusion solutions. We studied six woody species (three conifers and three angiosperms) which varied in pit membrane structure, pit size and frequency of axial water transport across pits (long versus short conduits). Both stepwise ("steady") and nonlinear continuous ("non-steady") decreases in the pressure gradient led to decreased k(s) in all species but white oak (Quercus garryana Dougl.
View Article and Find Full Text PDF