Publications by authors named "Johann Brehmer"

Many domains of science have developed complex simulations to describe phenomena of interest. While these simulations provide high-fidelity models, they are poorly suited for inference and lead to challenging inverse problems. We review the rapidly developing field of simulation-based inference and identify the forces giving additional momentum to the field.

View Article and Find Full Text PDF

Simulators often provide the best description of real-world phenomena. However, the probability density that they implicitly define is often intractable, leading to challenging inverse problems for inference. Recently, a number of techniques have been introduced in which a surrogate for the intractable density is learned, including normalizing flows and density ratio estimators.

View Article and Find Full Text PDF

We present powerful new analysis techniques to constrain effective field theories at the LHC. By leveraging the structure of particle physics processes, we extract extra information from Monte Carlo simulations, which can be used to train neural network models that estimate the likelihood ratio. These methods scale well to processes with many observables and theory parameters, do not require any approximations of the parton shower or detector response, and can be evaluated in microseconds.

View Article and Find Full Text PDF