Publications by authors named "Johann Beghain"

Article Synopsis
  • * Researchers analyzed the genetic and phenotypic characteristics of GAS strains, finding that most belonged to the emerging emm89 clade 3, sharing similar molecular markers and displaying consistent biofilm formation and interactions with lung cells and immune cells.
  • * The findings indicate that specific genetic mutations did not correlate with the severity of infections, highlighting the strain's ability to cause significant outbreaks among vulnerable patients due to its inherent phenotypic traits.
View Article and Find Full Text PDF

The genus Escherichia is composed of Escherichia albertii, E. fergusonii, five cryptic Escherichia clades and E. coli sensu stricto.

View Article and Find Full Text PDF

Background: Western Cambodia is the epicentre of Plasmodium falciparum multidrug resistance and is facing high rates of dihydroartemisinin-piperaquine treatment failures. Genetic tools to detect the multidrug-resistant parasites are needed. Artemisinin resistance can be tracked using the K13 molecular marker, but no marker exists for piperaquine resistance.

View Article and Find Full Text PDF

Motivation: Most computational approaches for the analysis of omics data in the context of interaction networks have very long running times, provide single or partial, often heuristic, solutions and/or contain user-tuneable parameters.

Results: We introduce local enrichment analysis (LEAN) for the identification of dysregulated subnetworks from genome-wide omics datasets. By substituting the common subnetwork model with a simpler local subnetwork model, LEAN allows exact, parameter-free, efficient and exhaustive identification of local subnetworks that are statistically dysregulated, and directly implicates single genes for follow-up experiments.

View Article and Find Full Text PDF

Background: Recent gains in reducing the global burden of malaria are threatened by the emergence of Plasmodium falciparum resistance to artemisinins. The discovery that mutations in portions of a P. falciparum gene encoding kelch (K13)-propeller domains are the major determinant of resistance has provided opportunities for monitoring such resistance on a global scale.

View Article and Find Full Text PDF

Background: In eukaryotic genomes, deletion or amplification rates have been estimated to be a thousand more frequent than single nucleotide variation. In Plasmodium falciparum, relatively few transcription factors have been identified, and the regulation of transcription is seemingly largely influenced by gene amplification events. Thus copy number variation (CNV) is a major mechanism enabling parasite genomes to adapt to new environmental changes.

View Article and Find Full Text PDF

Background: The declining efficacy of dihydroartemisinin-piperaquine against Plasmodium falciparum in Cambodia, along with increasing numbers of recrudescent cases, suggests resistance to both artemisinin and piperaquine. Available in vitro piperaquine susceptibility assays do not correlate with treatment outcome. A novel assay using a pharmacologically relevant piperaquine dose/time exposure was designed and its relevance explored in retrospective and prospective studies.

View Article and Find Full Text PDF

Plasmodium falciparum resistance to artemisinin derivatives in Southeast Asia threatens global malaria control strategies. Whether delayed parasite clearance, which exposes larger parasite numbers to artemisinins for longer times, selects higher-grade resistance remains unexplored. We investigated whether long-lasting artemisinin pressure selects a novel multidrug-tolerance profile.

View Article and Find Full Text PDF

Plasmodium falciparum resistance to artemisinin derivatives in southeast Asia threatens malaria control and elimination activities worldwide. To monitor the spread of artemisinin resistance, a molecular marker is urgently needed. Here, using whole-genome sequencing of an artemisinin-resistant parasite line from Africa and clinical parasite isolates from Cambodia, we associate mutations in the PF3D7_1343700 kelch propeller domain ('K13-propeller') with artemisinin resistance in vitro and in vivo.

View Article and Find Full Text PDF