Publications by authors named "Johan Wessberg"

Slowly-adapting type II (SA-II, Ruffini) mechanoreceptive afferents respond well to pressure and stretch, and are regularly encountered in human microneurography studies. Despite an understanding of SA-II response properties, their role in touch perception remains unclear. Specific roles of different myelinated Aβ mechanoreceptive afferents in tactile perception have been revealed using single unit intraneural microstimulation (INMS), via microneurography, recording from and then electrically stimulating individual afferents.

View Article and Find Full Text PDF

Unmyelinated tactile (C-tactile or CT) afferents are abundant in arm hairy skin and have been suggested to signal features of social affective touch. Here, we recorded from unmyelinated low-threshold mechanosensitive afferents in the peroneal and radial nerves. The most distal receptive fields were located on the proximal phalanx of the third finger for the superficial branch of the radial nerve and near the lateral malleolus for the peroneal nerve.

View Article and Find Full Text PDF

Patients with bi-allelic loss of function mutations in the voltage-gated sodium channel Nav1.7 present with congenital insensitivity to pain (CIP), whilst low threshold mechanosensation is reportedly normal. Using psychophysics (n = 6 CIP participants and n = 86 healthy controls) and facial electromyography (n = 3 CIP participants and n = 8 healthy controls), we found that these patients also have abnormalities in the encoding of affective touch, which is mediated by the specialized afferents C-low threshold mechanoreceptors (C-LTMRs).

View Article and Find Full Text PDF

The rubber hand illusion is known to invoke a sense of ownership of a rubber hand when a person watches the stroking of the rubber hand in synchrony with their own hidden hand. Quantification of the sense of ownership is traditionally performed with the rubber hand illusion questionnaire, but the search for reliable physiological measurements persists. Skin temperature has been previously suggested and debated as a biomarker for ownership.

View Article and Find Full Text PDF

The forces that are developed when manipulating objects generate sensory cues that inform the central nervous system about the qualities of the object's surface and the status of the hand/object interaction. Afferent responses to frictional transients or slips have been studied in the context of lifting/holding tasks. Here, we used microneurography and an innovative tactile stimulator, the Stimtac, to modulate both the friction level of a surface, without changing the surface or adding a lubricant, and, to generate the frictional transients in a pure and net fashion.

View Article and Find Full Text PDF

C-tactile (CT) afferents were long-believed to be lacking in humans, but these were subsequently shown to densely innervate the face and arm skin, and to a lesser extent the leg. Their firing frequency to stroking touch at different velocities has been correlated with ratings of tactile pleasantness. CT afferents were thought to be absent in human glabrous skin; however, tactile pleasantness can be perceived across the whole body, including glabrous hand skin.

View Article and Find Full Text PDF

Conventional prosthetic arms suffer from poor controllability and lack of sensory feedback. Owing to the absence of tactile sensory information, prosthetic users must rely on incidental visual and auditory cues. In this study, we investigated the effect of providing tactile perception on motor coordination during routine grasping and grasping under uncertainty.

View Article and Find Full Text PDF

Positive affective touch plays a central role in social and inter-personal interactions. Low-threshold mechanoreceptive afferents, including slowly-conducting C-tactile (CT) afferents found in hairy skin, transmit such signals from gentle touch to the brain. Tactile signals are processed, in part, by the posterior insula, where it is the thought to be the primary target for CTs.

View Article and Find Full Text PDF

Active sensing in biological system consists of emitting/receiving a periodic signal to explore the environment. The signal can be emitted toward distant objects, as in echolocation, or in direct contact with the object, for example, whisking in rodents. We explored the hypothesis that a similar mechanism exists in humans.

View Article and Find Full Text PDF

The sensation of touch in the glabrous skin of the human hand is conveyed by thousands of fast-conducting mechanoreceptive afferents, which can be categorised into four distinct types. The spiking properties of these afferents in the periphery in response to varied tactile stimuli are well-characterised, but relatively little is known about the spatiotemporal properties of the neural representations of these different receptor types in the human cortex. Here, we use the novel methodological combination of single-unit intraneural microstimulation (INMS) with magnetoencephalography (MEG) to localise cortical representations of individual touch afferents in humans, by measuring the extracranial magnetic fields from neural currents.

View Article and Find Full Text PDF

C-tactile (CT) afferents respond to gentle tactile stimulation, but only a handful of studies in humans and animals have investigated whether their firing is modified by temperature. We describe the effects of radiant thermal stimuli, and of stationary and very slowly moving mechanothermal stimuli, on CT afferent responses. We find that CT afferents are primarily mechanoreceptors, as they fired little during radiant thermal stimuli, but they exhibited different patterns of firing during combined mechano-cool stimulation compared with warming.

View Article and Find Full Text PDF

The present case study details sensations elicited by electrical stimulation of peripheral nerve axons using an implanted nerve cuff electrode, in a participant with a transhumeral amputation. The participant uses an osseointegrated electromechanical interface, which enables skeletal attachment of the prosthesis and long-term, stable, bidirectional communication between the implanted electrodes and prosthetic arm. We focused on evoking somatosensory percepts, where we tracked and quantified the evolution of perceived sensations in the missing hand, which were evoked from electrical stimulation of the nerve, for over 2 yr.

View Article and Find Full Text PDF

Background: Intra-neural microstimulation (INMS) is a technique that allows the precise delivery of low-current electrical pulses into human peripheral nerves. Single unit INMS can be used to stimulate individual afferent nerve fibres during microneurography. Combining this with neuroimaging allows the unique monitoring of central nervous system activation in response to unitary, controlled tactile input, with functional magnetic resonance imaging (fMRI) providing exquisite spatial localisation of brain activity and magnetoencephalography (MEG) high temporal resolution.

View Article and Find Full Text PDF

Unmyelinated low threshold C-tactile fibers moderate pleasant aspects of touch. These fibers respond optimally to stroking stimulation of the skin with slow velocities (1-10 cm/s). Low threshold mechanoreceptors are arranged around hair follicles in rodent skin.

View Article and Find Full Text PDF

Osseoperception is the sensation arising from the mechanical stimulation of a bone-anchored prosthesis. Here we show that not only touch, but also hearing is involved in this phenomenon. Using mechanical vibrations ranging from 0.

View Article and Find Full Text PDF

C-mechanoreceptors in humans comprise a population of unmyelinated afferents exhibiting a wide range of mechanical sensitivities. C-mechanoreceptors are putatively divided into those signaling gentle touch (C-tactile afferents, CTs) and nociception (C-mechanosensitive nociceptors, CMs), giving rise to positive and negative affect, respectively. We sought to distinguish, compare, and contrast the properties of a population of human C-mechanoreceptors to see how fundamental the divisions between these putative subpopulations are.

View Article and Find Full Text PDF

Using ultra-high field 7 Tesla (7T) functional magnetic resonance imaging (fMRI), we map the cortical and perceptual responses elicited by intraneural microstimulation (INMS) of single mechanoreceptive afferent units in the median nerve, in humans. Activations are compared to those produced by applying vibrotactile stimulation to the unit's receptive field, and unit-type perceptual reports are analyzed. We show that INMS and vibrotactile stimulation engage overlapping areas within the topographically appropriate digit representation in the primary somatosensory cortex.

View Article and Find Full Text PDF

Inter-individual touch can be a desirable reward that can both relieve negative affect and evoke strong feelings of pleasure. However, if other sensory cues indicate it is undesirable to interact with the toucher, the affective experience of the same touch may be flipped to disgust. While a broad literature has addressed, on one hand the neurophysiological basis of ascending touch pathways, and on the other hand the central neurochemistry involved in touch behaviors, investigations of how external context and internal state shapes the hedonic value of touch have only recently emerged.

View Article and Find Full Text PDF

The multimodal properties of the human somatosensory system continue to be unravelled. There is mounting evidence that one of these submodalities-touch-has another dimension, providing not only its well-recognized discriminative input to the brain, but also an affective input. It has long been recognized that touch plays an important role in many forms of social communication and a number of theories have been proposed to explain observations and beliefs about the "power of touch.

View Article and Find Full Text PDF

Human C-tactile (CT) afferents respond vigorously to gentle skin stroking and have gained attention for their importance in social touch. Pharmacogenetic activation of the mouse CT equivalent has positively reinforcing, anxiolytic effects, suggesting a role in grooming and affiliative behavior. We recorded from single CT axons in human participants, using the technique of microneurography, and stimulated a unit's receptive field using a novel, computer-controlled moving probe, which stroked the skin of the forearm over five velocities (0.

View Article and Find Full Text PDF

Interpersonal touch is frequently used for communicating emotions, strengthen social bonds and to give others pleasure. The neuropeptide oxytocin increases social interest, improves recognition of others' emotions, and it is released during touch. Here, we investigated how oxytocin and gentle human touch affect social impressions of others, and vice versa, how others' facial expressions and oxytocin affect touch experience.

View Article and Find Full Text PDF

Placebo analgesia is often conceptualized as a reward mechanism. However, by targeting only negative experiences, such as pain, placebo research may tell only half the story. We compared placebo improvement of painful touch (analgesia) with placebo improvement of pleasant touch (hyperhedonia) using functional MRI and a crossover design.

View Article and Find Full Text PDF

Human tactile sensibility in hairy skin is mediated not only by fast conducting myelinated (Aβ) afferents, but also by a system of slow conducting, unmyelinated afferents that respond preferentially to light touch, C-tactile (CT) afferents. This system has previously been shown to correlate with the pleasantness of tactile stimuli, where a soft brush moving at 1-3cm/s activates CT afferents strongly. Functional magnetic resonance imaging (fMRI) studies have shown that preferential CT fiber stimulation activates the posterior insula cortex.

View Article and Find Full Text PDF

Active, self-touch and the passive touch from an external source engage comparable afferent mechanoreceptors on the touched skin site. However, touch directed to glabrous skin compared to hairy skin will activate different types of afferent mechanoreceptors. Despite perceptual similarities between touch to different body sites, it is likely that the touch information is processed differently.

View Article and Find Full Text PDF

Human skin is innervated with a variety of receptors serving somatosensation and includes the sensory sub-modalities of touch, temperature, pain and itch. The density and type of receptors differ across the body surface, and there are various body-map representations in the brain. The perceptions of skin sensations outside of the specified sub-modalities, e.

View Article and Find Full Text PDF