In order to unravel morphogenetic mechanisms involved in neural tube closure, critical cell movements that are fundamental to remodelling of the cranial neural tube in the chick embryo were studied in vitro by quantitative time-lapse video microscopy. Two main directions of movements were observed. The earliest was directed medially; these cells invaginated into a median groove and were the main contributors to the initial neural tube closure.
View Article and Find Full Text PDFBackground: The curly tail (ct) mutant mouse is one of the best-studied mouse models of spina bifida. The ct mutation has been localized to distal chromosome 4 in two independent studies and was recently postulated to be in the Grhl-3 gene.
Methods: A recombinant BALB/c-ct strain was generated and used to precisely map the ct gene.
Neural tube defects, mostly believed to result from closure defects of the neural tube during embryonic development, are frequently observed congenital malformations in humans. Since the etiology of these defects is not well understood yet, many animal models for neural tube defects, either arising from spontaneous mutations or generated by gene targeting, are being studied. The Bent tail mouse is a model for X-linked neural tube defects.
View Article and Find Full Text PDFIn a previous study, we have demonstrated that initial closure of the mesencephalic neural groove in the chick embryo is different from neurulation elsewhere. The neural groove invaginates, the walls appose and make contact in a ventrodorsal direction, and subsequently separate ventrally, forming an incipient neural tube lumen, which finally widens into a definitive lumen. In this study, a role for actin in the processes of this initial mesencephalic closure is studied.
View Article and Find Full Text PDF