Publications by authors named "Johan Vad-Nielsen"

Genetic variants that affect mRNA splicing are a major cause of hereditary disorders, but the spliceogenicity of variants is challenging to predict. RNA diagnostics of clinically accessible tissues enable rapid functional characterization of splice-altering variants within their natural genetic context. However, this analysis cannot be offered to all individuals as one in five human disease genes are not expressed in easily accessible cell types.

View Article and Find Full Text PDF

Background: Epithelial-mesenchymal-transition (EMT) is an epigenetic-based mechanism contributing to the acquired treatment resistance against receptor tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) cells harboring epidermal growth factor receptor ()-mutations. Delineating the exact epigenetic and gene-expression alterations in EMT-associated EGFR TKI-resistance (EMT-E-TKI-R) is vital for improved diagnosis and treatment of NSCLC patients.

Methods: We characterized genome-wide changes in mRNA-expression, DNA-methylation and the histone-modification H3K36me3 in -mutated NSCLC HCC827 cells in result of acquired EMT-E-TKI-R.

View Article and Find Full Text PDF
Article Synopsis
  • Liquid biopsies analyzing tumor-specific transcription may provide valuable diagnostic and prognostic information for non-small cell lung cancer (NSCLC).
  • The study examined the relationship between mutated EGFR (EGFR-L858R) transcription and mRNA levels using chromatin immunoprecipitation (cfChIP) and quantitative PCR techniques on both cell lines and patient plasma samples.
  • Results showed that the cfChIP method can effectively identify active transcription of specific mutations, suggesting its potential to improve liquid biopsy analyses for enhancing cancer diagnosis and treatment approaches.
View Article and Find Full Text PDF

Objectives: Lung cancer is the leading cause of cancer related death worldwide. Accurate molecular diagnostics from a tumor biopsy is paramount for correct diagnosis, treatment strategy, and prediction of outcome. However, a tumor biopsy can be misleading due to tumor heterogeneity and consecutive biopsies are rarely achievable.

View Article and Find Full Text PDF

Interferon lambda 4 (IFN-λ4) is a recently identified enigmatic member of the interferon (IFN) lambda family. Genetic data suggest that the gene acts in a proviral and anti-inflammatory manner in patients. However, the protein is indistinguishable from the other members of the interferon lambda family.

View Article and Find Full Text PDF

Objectives: Increased FGFR1 expression is associated with resistance to tyrosine kinase inhibitors (TKIs) in EGFR-mutated NSCLC cells and often concomitant with epithelial to mesenchymal transition (EMT). However, the cause-and-effect relationship between increased FGFR1 expression and EMT in the genetic background of EGFR-mutated non-small cell lung cancer (NSCLC) cells is not clear. Previous studies have specifically addressed the relationship between EMT and increased FGFR1 expression in the context of simultaneous TKI-mediated blocking of EGFR-signaling.

View Article and Find Full Text PDF

Non-small cell lung carcinoma patients with epidermal growth factor receptor (EGFR) mutations are offered EGFR tyrosine kinase inhibitors (TKI) as first line treatment, but 20-40% of these patients do not respond. High expression of alternative receptor tyrosine kinases, such as Fibroblast growth factor receptor 1 (FGFR1), potentially mediates intrinsic EGFR TKI resistance. To study this in molecular detail, we used CRISPR-dCas9 Synergistic Activation Mediator (SAM) for up-regulation of FGFR1 in physiological relevant levels in the EGFR mutated NSCLC cell lines HCC827 and PC9 thereby generating HCC827 and PC9.

View Article and Find Full Text PDF

When studying complex interconnected regulatory networks, effective methods for simultaneously manipulating multiple genes expression are paramount. Previously, we have developed a simple method for generation of an all-in-one CRISPR gRNA expression array. We here present a Golden Gate Assembly-based system of synergistic activation mediator (SAM) compatible CRISPR/dCas9 gRNA expression array for the simultaneous activation of multiple genes.

View Article and Find Full Text PDF

The engineered CRISPR/Cas9 technology has developed as the most efficient and broadly used genome editing tool. However, simultaneously targeting multiple genes (or genomic loci) in the same individual cells using CRISPR/Cas9 remain one technical challenge. In this article, we have developed a Golden Gate Assembly method for the generation of CRISPR gRNA expression arrays, thus enabling simultaneous gene targeting.

View Article and Find Full Text PDF

Background: The three members of the human heterochromatin protein 1 (HP1) family of proteins, HP1α, HP1β, and HPγ, are involved in chromatin packing and epigenetic gene regulation. HP1α is encoded from the CBX5 gene and is a suppressor of metastasis. CBX5 is down-regulated at the transcriptional and protein level in metastatic compared to non-metastatic breast cancer.

View Article and Find Full Text PDF

Intestinal CD4(+) T cell depletion is rapid and profound during early HIV-1 infection. This leads to a compromised mucosal barrier that prompts chronic systemic inflammation. The preferential loss of intestinal T helper 17 (Th17) cells in HIV-1 disease is a driver of the damage within the mucosal barrier and of disease progression.

View Article and Find Full Text PDF

Adjunct therapy with the histone deacetylase inhibitor (HDACi) romidepsin increases plasma viremia in HIV patients on combination antiretroviral therapy (cART). However, a potential concern is that reversing HIV latency with an HDACi may reactivate the virus in anatomical compartments with suboptimal cART concentrations, leading to de novo infection of susceptible cells in these sites. We tested physiologically relevant romidepsin concentrations known to reactivate latent HIV in order to definitively address this concern.

View Article and Find Full Text PDF

Heterochromatin protein 1α (HP1α) encoded from the CBX5-gene is an evolutionary conserved protein that binds histone H3 di- or tri-methylated at position lysine 9 (H3K9me2/3), a hallmark for heterochromatin, and has an essential role in forming higher order chromatin structures. HP1α has diverse functions in heterochromatin formation, gene regulation, and mitotic progression, and forms complex networks of gene, RNA, and protein interactions. Emerging evidence has shown that HP1α serves a unique biological role in breast cancer related processes and in particular for epigenetic control mechanisms involved in aberrant cell proliferation and metastasis.

View Article and Find Full Text PDF