Publications by authors named "Johan Schoukens"

Purpose: Reliable intraoperative delineation of tumor from healthy brain tissue is essentially based on the neurosurgeon's visual aspect and tactile impression of the considered tissue, which is-due to inherent low brain consistency contrast-a challenging task. Development of an intelligent artificial intraoperative tactile perception will be a relevant task to improve the safety during surgery, especially when-as for neuroendoscopy-tactile perception will be damped or-as for surgical robotic applications-will not be a priori existent. Here, we present the enhancements and the evaluation of a tactile sensor based on the use of a piezoelectric tactile sensor.

View Article and Find Full Text PDF

Joint manipulation elicits a response from the sensors in the periphery which, via the spinal cord, arrives in the cortex. The average evoked cortical response recorded using electroencephalography was shown to be highly nonlinear; a linear model can only explain 10% of the variance of the evoked response, and over 80% of the response is generated by nonlinear behavior. The goal of this paper is to obtain a nonparametric nonlinear dynamic model, which can consistently explain the recorded cortical response requiring little a priori assumptions about model structure.

View Article and Find Full Text PDF

In vegetation science and forest management, tree density is often used as a variable. To determine the value of this variable, reliable field methods are necessary. When vegetation is sparse or not easily accessible, the use of sample plots is not feasible in the field.

View Article and Find Full Text PDF

The goal of this manuscript is to present a new methodology for real time analysis of time-varying electrical bioimpedance data. The approach assumes that the Fricke-Morse model of living tissues is meaningful and valid within the measured frequency range (10 kHz to 1 MHz). The parameters of this model are estimated in the whole frequency range with the presented method based on differential impedance analysis (DIA).

View Article and Find Full Text PDF

Lung biopsies form the basis for the diagnosis of lung cancer. However, in a significant number of cases bronchoscopic lung biopsies fail to provide useful information, especially in diffuse lung disease, so more aggressive procedures are required. Success could be improved using a guided electronic biopsy based on multisine electrical impedance spectroscopy (EIS), a technique which is evaluated in this paper.

View Article and Find Full Text PDF

Classical measurements of myocardium tissue electrical impedance for characterizing the morphology of myocardium cells, as well as cell membranes integrity and intra/extra cellular spaces, are based on the frequency-sweep electrical impedance spectroscopy (EIS) technique. In contrast to the frequency-sweep EIS approach, measuring with broadband signals, i.e.

View Article and Find Full Text PDF

To improve our understanding of the climate process and to assess the human impact on current global warming, past climate reconstruction is essential. The chemical composition of a bivalve shell is strongly coupled to environmental variations and therefore ancient shells are potential climate archives. The nonlinear nature of the relation between environmental condition (e.

View Article and Find Full Text PDF