FKBP-12, a 12 kDa FK506-binding protein (neuroimmunophilin), acts as a receptor for the immunosuppressant drug FK506. Neuroimmunophilins, including FKBP-12, are abundant in the brain and have been shown to be involved in reversing neuronal degeneration and preventing cell death. In this report, we have utilized several analytical techniques, such as in situ hybridization, Western blotting, two-dimensional gel electrophoresis, and liquid chromatography electrospray tandem mass spectrometry to study the transcriptional expression as well as protein levels of FKBP-12 in the unilateral 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease.
View Article and Find Full Text PDFMultiple genetic deficits have linked impaired ubiquitin-conjugation pathways to various forms of familiar Parkinson's disease. We therefore examined the possible role of 6-hydroxydopamine, a dopaminergic neurotoxin used in Parkinson's disease experimental models, in causing protein degradation and its association with the ubiquitin proteasome system. Using unilaterally 6-hydroxydopamine-denervated rats and mass spectrometry profiling directly on brain tissue sections, we here report for the first time an increased level of unconjugated ubiquitin specifically in the dorsal striatum of the dopamine depleted hemisphere.
View Article and Find Full Text PDFDirect molecular profiling of biological samples using matrix-assisted laser desorption ionization mass spectrometry is a powerful tool for identifying phenotypic markers. In this report, protein profiling was used for the first time to generate peptide and protein profiles of brain tissue sections obtained from experimental Parkinson's disease (unilaterally 6-hydroxydopamine treated rats). The mass spectrometer was used to map the peptide and protein expression directly on 12 microm tissue sections in mass-to-charge (m/z) values, providing the capability of mapping specific molecules of the original sample, that is, localization, intensity and m/z ratio.
View Article and Find Full Text PDFIn vivo microdialysis in combination with liquid chromatography/electrospray time-of-flight mass spectrometry was used to study the processing of LVV-hemorphin-7, an endogenous decapeptide with opioid activity, in rat brain and blood. A microdialysis probe (flow rate 0.4 microL/min) was used to both introduce LVV-hemorphin-7 into the striatum of the brain (1.
View Article and Find Full Text PDF