New markers are constantly emerging that identify smaller and smaller subpopulations of immune cells. However, there is a growing awareness that even within very small populations, there is a marked functional heterogeneity and that measurements at the population level only gives an average estimate of the behaviour of that pool of cells. New techniques to analyze single immune cells over time are needed to overcome this limitation.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
July 2010
Cell-cell communication is critical to the development, maintenance, and function of multicellular organisms. Classical mechanisms for intercellular communication include secretion of molecules into the extracellular space and transport of small molecules through gap junctions. Recent reports suggest that cells also can communicate over long distances via a network of transient intercellular nanotubes.
View Article and Find Full Text PDFThe microinjection of bacteria (the MG1655 strain of E. coli) into unilamellar lipid vesicles contained in surface-immobilized nanotube-vesicle networks is demonstrated. The density of bacteria can be controlled from a single bacterium up to several thousands of bacteria per injected vesicle.
View Article and Find Full Text PDFWe investigate the formation of Y junctions in surfactant nanotubes connecting vesicles. Based on experimental observations of the surfactant flow on the nanotubes, we conclude that a Y junction propagates with a zipperlike mechanism. The surfactants from two nanotube branches undergo 1:1 mixing at the junction, and spontaneously form the extension of the third nanotube branch.
View Article and Find Full Text PDFNanofluidic devices are rapidly emerging as tools uniquely suited to transport and interrogate single molecules. We present a simple method to rapidly obtain compact surfactant nanotube networks of controlled geometry and length. The nanotubes, 100-300 nm in diameter, are pulled from lipid vesicles using a micropipet technique, with multilamellar vesicles serving as reservoirs of surfactant material.
View Article and Find Full Text PDFMethods based on self-assembly, self-organization, and forced shape transformations to form synthetic or semisynthetic enclosed lipid bilayer structures with several properties similar to biological nanocompartments are reviewed. The procedures offer unconventional micro- and nanofabrication routes to yield complex soft-matter devices for a variety of applications for example, in physical chemistry and nanotechnology. In particular, we describe novel micromanipulation methods for producing fluid-state lipid bilayer networks of nanotubes and surface-immobilized vesicles with controlled geometry, topology, membrane composition, and interior contents.
View Article and Find Full Text PDFA tool for detection and characterization of intracellular enzyme-substrate and receptor-ligand interactions inside the cytoplasm of single targeted cells or small confined groups of cells is presented. Fluorogenic enzyme substrates and receptor ligands were rapidly delivered by electroosmosis and internalized by electroporation in cells using an electrolyte-filled capillary (EFC) biased at a high voltage. Specifically, alkaline phosphatase and proteases were detected in single NG108-15 cells using fluorescein diphosphate and casein BODIPY FL, respectively.
View Article and Find Full Text PDF