Targeted capture combined with massively parallel exome sequencing is a promising approach to identify genetic variants implicated in human traits. We report exome sequencing of 200 individuals from Denmark with targeted capture of 18,654 coding genes and sequence coverage of each individual exome at an average depth of 12-fold. On average, about 95% of the target regions were covered by at least one read.
View Article and Find Full Text PDFMost common hereditary diseases in humans are complex and multifactorial. Large-scale genome-wide association studies based on SNP genotyping have only identified a small fraction of the heritable variation of these diseases. One explanation may be that many rare variants (a minor allele frequency, MAF <5%), which are not included in the common genotyping platforms, may contribute substantially to the genetic variation of these diseases.
View Article and Find Full Text PDFObjective: Common variants in the melatonin receptor type 1B (MTNR1B) locus have been shown to increase fasting plasma glucose (FPG) and the risk of type 2 diabetes. The aims of this study were to evaluate whether nonsynonymous variants in MTNR1B associate with monogenic forms of hyperglycemia, type 2 diabetes, or related metabolic traits.
Research Design And Methods: MTNR1B was sequenced in 47 probands with clinical maturity-onset diabetes of the young (MODY), in 51 probands with early-onset familial type 2 diabetes, and in 94 control individuals.
Objective: Phosphoinositide 3-kinase (PI3K) is a major effector in insulin signaling. rs361072, located in the promoter of the gene (PIK3CB) for the p110beta subunit, has previously been found to be associated with homeostasis model assessment for insulin resistance (HOMA-IR) in obese subjects. The aim was to investigate the influence of rs361072 on in vivo glucose metabolism, skeletal muscle PI3K subunit protein levels, and type 2 diabetes.
View Article and Find Full Text PDFBackground: YKL-40 is a chitinase-like glycoprotein encoded by the chitinase 3-like 1 gene, CHI3L1, localized at chromosome 1q32.1. Increased levels of serum YKL-40 have been reported to be a biomarker for asthma and a reduced lung function.
View Article and Find Full Text PDFBackground: Polymorphisms in the potassium channel, voltage-gated, KQT-like subfamily, member 1 (KCNQ1) have recently been reported to associate with type 2 diabetes. The primary aim of the present study was to investigate the putative impact of these KCNQ1 polymorphisms (rs2283228, rs2237892, rs2237895, and rs2237897) on estimates of glucose stimulated insulin release.
Methodology/principal Findings: Genotypes were examined for associations with serum insulin levels following an oral glucose tolerance test (OGTT) in a population-based sample of 6,039 middle-aged and treatment-naïve individuals.
Background: CHI3LI encoding the inflammatory glycoprotein YKL-40 is located on chromosome 1q32.1. YKL-40 is involved in inflammatory processes and patients with Type 2 Diabetes (T2D) have elevated circulating YKL-40 levels which correlate with their level of insulin resistance.
View Article and Find Full Text PDFObjective: Genome-wide association studies have identified several variants within the MTNR1B locus that are associated with fasting plasma glucose (FPG) and type 2 diabetes. We refined the association signal by direct genotyping and examined for associations of the variant displaying the most independent effect on FPG with isolated impaired fasting glycemia (i-IFG), isolated impaired glucose tolerance (i-IGT), type 2 diabetes, and measures of insulin release and peripheral and hepatic insulin sensitivity.
Research Design And Methods: We examined European-descent participants in the Inter99 study (n = 5,553), in a sample of young healthy Danes (n = 372), in Danish twins (n = 77 elderly and n = 97 young), in additional Danish type 2 diabetic patients (n = 1,626) and control subjects (n = 505), in the Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) study (n = 4,656), in the North Finland Birth Cohort 86 (n = 5,258), and in the Haguenau study (n = 1,461).
In genome-wide association (GWA) data from 2,151 nondiabetic French subjects, we identified rs1387153, near MTNR1B (which encodes the melatonin receptor 2 (MT2)), as a modulator of fasting plasma glucose (FPG; P = 1.3 x 10(-7)). In European populations, the rs1387153 T allele is associated with increased FPG (beta = 0.
View Article and Find Full Text PDFWe conducted a genome-wide association study using 207,097 SNP markers in Japanese individuals with type 2 diabetes and unrelated controls, and identified KCNQ1 (potassium voltage-gated channel, KQT-like subfamily, member 1) to be a strong candidate for conferring susceptibility to type 2 diabetes. We detected consistent association of a SNP in KCNQ1 (rs2283228) with the disease in several independent case-control studies (additive model P = 3.1 x 10(-12); OR = 1.
View Article and Find Full Text PDFObjective: Mutations in the hepatocyte nuclear factor (HNF)-1alpha, HNF-4alpha, glucokinase (GCK), and HNF-1beta genes cause maturity-onset diabetes of the young (MODY), but it is not known whether common variants in these genes predict future type 2 diabetes.
Research Design And Methods: We tested 14 previously associated polymorphisms in HNF-1alpha, HNF-4alpha, GCK, and HNF-1beta for association with type 2 diabetes-related traits and future risk of type 2 diabetes in 2,293 individuals from the Botnia study (Finland) and in 15,538 individuals from the Malmö Preventive Project (Sweden) with a total follow-up >360,000 years.
Results: The polymorphism rs1169288 in HNF-1alpha strongly predicted future type 2 diabetes (hazard ratio [HR] 1.
Insulin resistance and type 2 diabetes are associated with decreased expression of genes that regulate oxidative phosphorylation in skeletal muscle. To determine whether this defect might be inherited or acquired, we investigated the association of genetic, epigenetic, and nongenetic factors with expression of NDUFB6, a component of the respiratory chain that is decreased in muscle from diabetic patients. Expression of NDUFB6 was influenced by age, with lower gene expression in muscle of elderly subjects.
View Article and Find Full Text PDFNew strategies for prevention and treatment of type 2 diabetes (T2D) require improved insight into disease etiology. We analyzed 386,731 common single-nucleotide polymorphisms (SNPs) in 1464 patients with T2D and 1467 matched controls, each characterized for measures of glucose metabolism, lipids, obesity, and blood pressure. With collaborators (FUSION and WTCCC/UKT2D), we identified and confirmed three loci associated with T2D-in a noncoding region near CDKN2A and CDKN2B, in an intron of IGF2BP2, and an intron of CDKAL1-and replicated associations near HHEX and in SLC30A8 found by a recent whole-genome association study.
View Article and Find Full Text PDFIt is currently unclear how often genes that are mutated to cause rare, early-onset monogenic forms of disease also harbor common variants that contribute to the more typical polygenic form of each disease. The gene for MODY3 diabetes, HNF1alpha, lies in a region that has shown linkage to late-onset type 2 diabetes (12q24, NIDDM2), and previous association studies have suggested a weak trend toward association for common missense variants in HNF1alpha with glucose-related traits. Based on genotyping of 79 common SNPs in the 118 kb spanning HNF1alpha, we selected 21 haplotype tag single nucleotide polymorphisms (SNPs) and genotyped them in >4,000 diabetic patients and control subjects from Sweden, Finland, and Canada.
View Article and Find Full Text PDFA GAA-repeat in the X25 gene is causing Friedreich's ataxia (FRDA), a common neurodegenerative disease and >20% of FRDA patients develop type II diabetes (T2D). Linkage has previously been detected between T2D and chromosome 9p13-q21, the region that harbours the X25 gene, but association studies of this gene in T2D have been contradicting. Here, we examined whether genetic variation in the X25 gene is associated with risk for T2D.
View Article and Find Full Text PDFThe genes for the sulfonylurea receptor (SUR1; encoded by ABCC8) and its associated islet ATP-sensitive potassium channel (Kir6.2; encoded by KCNJ11) are adjacent to one another on human chromosome 11. Multiple studies have reported association of the E23K variant of Kir6.
View Article and Find Full Text PDF