Publications by authors named "Johan Gustafsson"

Background: The aim was to compare bias and precision for Lu-SPECT activity-concentration estimation using a dual-headed Anger SPECT system and a ring-configured CZT SPECT system. This was investigated for imaging at 208 keV and 113 keV, respectively.

Methods: Phantom experiments were performed on a GE Discovery 670 system with 5/8'' NaI(Tl) crystal (dual-headed Anger system) and a GE StarGuide (ring-configured CZT system).

View Article and Find Full Text PDF

The term 'RNA-seq' refers to a collection of assays based on sequencing experiments that involve quantifying RNA species from bulk tissue, single cells or single nuclei. The kallisto, bustools and kb-python programs are free, open-source software tools for performing this analysis that together can produce gene expression quantification from raw sequencing reads. The quantifications can be individualized for multiple cells, multiple samples or both.

View Article and Find Full Text PDF

Background: The aim was to investigate the noise and bias properties of quantitative Lu-SPECT with respect to the number of projection angles, and the number of subsets and iterations in the OS-EM reconstruction, for different total acquisition times.

Methods: Experimental SPECT acquisition of six spheres in a NEMA body phantom filled with Lu was performed, using medium-energy collimators and 120 projections with 180 s per projection. Bootstrapping was applied to generate data sets representing acquisitions with 20 to 120 projections for 10 min, 20 min, and 40 min, with 32 noise realizations per setting.

View Article and Find Full Text PDF

Background: Although the importance of quantitative SPECT has increased tremendously due to newly developed therapeutic radiopharmaceuticals, there are still no accreditation programs to harmonize SPECT imaging. Work is currently underway to develop an accreditation for quantitative Lu SPECT/CT. The aim of this study is to verify whether the positioning of the spheres within the phantom has an influence on the recovery and thus needs to be considered in SPECT harmonization.

View Article and Find Full Text PDF

Peptide receptor radionuclide therapy presents the possibility of tracing and quantifying the uptake of the drug in the body and performing dosimetry, potentially allowing individualization of treatment schemes. However, the details of how neuroendocrine tumors (NETs) respond to different absorbed doses are insufficiently known. Here, we investigated the relationship between tumor-absorbed dose and tumor response in a cohort of patients with NETs treated with [Lu]Lu-DOTATATE.

View Article and Find Full Text PDF

With the development of new radiopharmaceutical therapies, quantitative SPECT/CT has progressively emerged as a crucial tool for dosimetry. One major obstacle of SPECT is its poor resolution, which results in blurring of the activity distribution. Especially for small objects, this so-called partial-volume effect limits the accuracy of activity quantification.

View Article and Find Full Text PDF

Purpose: The aim was to investigate the use of multiple small VOIs for kidney dosimetry in [Lu]Lu-DOTA-TATE therapy.

Method: The study was based on patient and simulated SPECT images in anthropomorphic geometries. Images were reconstructed using two reconstruction programs (local LundaDose and commercial Hermia) using OS-EM with and without resolution recovery (RR).

View Article and Find Full Text PDF

The tumor microenvironment is composed of a complex mixture of different cell types interacting under conditions of nutrient deprivation, but the metabolism therein is not fully understood due to difficulties in measuring metabolic fluxes and exchange of metabolites between different cell types . Genome-scale metabolic modeling enables estimation of such exchange fluxes as well as an opportunity to gain insight into the metabolic behavior of individual cell types. Here, we estimated the availability of nutrients and oxygen within the tumor microenvironment using concentration measurements from blood together with a metabolite diffusion model.

View Article and Find Full Text PDF

Unlabelled: Physiologically based pharmacokinetic (PBPK) models offer the ability to simulate and predict the biodistribution of radiopharmaceuticals and have the potential to enable individualised treatment planning in molecular radiotherapy. The objective of this study was to develop and implement a whole-body compartmental PBPK model for peptide receptor radionuclide therapy (PRRT) with [Lu]Lu-DOTA-TATE in SimBiology to allow for more complex analyses. The correctness of the model implementation was ensured by comparing its outputs, such as the time-integrated activity (TIA), with those of a PBPK model implemented in SAAM II software.

View Article and Find Full Text PDF

Single-cell technologies have been widely used in biological studies and generated a plethora of single-cell data to be interpreted. Due to the inclusion of the priori metabolic network knowledge as well as gene-protein-reaction associations, genome-scale metabolic models (GEMs) have been a powerful tool to integrate and thereby interpret various omics data mostly from bulk samples. Here, we first review two common ways to leverage bulk omics data with GEMs and then discuss advances on integrative analysis of single-cell omics data with GEMs.

View Article and Find Full Text PDF

The energy metabolism of the brain is poorly understood partly due to the complex morphology of neurons and fluctuations in ATP demand over time. To investigate this, we used metabolic models that estimate enzyme usage per pathway, enzyme utilization over time, and enzyme transportation to evaluate how these parameters and processes affect ATP costs for enzyme synthesis and transportation. Our models show that the total enzyme maintenance energy expenditure of the human body depends on how glycolysis and mitochondrial respiration are distributed both across and within cell types in the brain.

View Article and Find Full Text PDF

Background: A 3D printing grid-based method was developed to construct anthropomorphic phantoms with non-uniform activity distributions, to be used for evaluation of quantitative SPECT images. The aims were to characterize the grid-based method and to evaluate its capability to provide realistically shaped phantoms with non-uniform activity distributions.

Methods: Characterization of the grid structures was performed by printing grid-filled spheres.

View Article and Find Full Text PDF

Genome-scale metabolic models (GEMs) are computational representations that enable mathematical exploration of metabolic behaviors within cellular and environmental constraints. Despite their wide usage in biotechnology, biomedicine and fundamental studies, there are many phenotypes that GEMs are unable to correctly predict. GECKO is a method to improve the predictive power of a GEM by incorporating enzymatic constraints using kinetic and omics data.

View Article and Find Full Text PDF

The term "RNA-seq" refers to a collection of assays based on sequencing experiments that involve quantifying RNA species from bulk tissue, from single cells, or from single nuclei. The kallisto, bustools, and kb-python programs are free, open-source software tools for performing this analysis that together can produce gene expression quantification from raw sequencing reads. The quantifications can be individualized for multiple cells, multiple samples, or both.

View Article and Find Full Text PDF

Introduction: The activity meter is used to determine the activity of delivered radiopharmaceuticals, administered activity to patients and reference activity when gamma-cameras are calibrated prior to imaged-based dosimetry. The aim is to describe a procedure for cross-calibration of activity meters at different clinical sites, and report on Lu activity results when using factory-set calibration factors compared to when calibration is performed with traceability to a primary standard.

Methods: Thirty activity meters placed at seven hospitals in Norway and Sweden from four manufacturers: Capintec, Commecer, NuviaTech and Veenstra were included.

View Article and Find Full Text PDF

Molecular radiotherapy is rapidly expanding, and new radiotherapeutics are emerging. The majority of treatments is still performed using empirical fixed activities and not tailored for individual patients. Molecular radiotherapy dosimetry is often seen as a promising candidate that would allow personalisation of treatments as outcome should ultimately depend on the absorbed doses delivered and not the activities administered.

View Article and Find Full Text PDF

One example of a PET exam that suffers from noise problems is [Ga]Ga-DOTA-TOC, where patients are generally administered between 100 and 200 MBq [Ga]Ga-DOTA-TOC, irrespective of size. However, a fixed activity can result in low signal-to-noise ratios (SNRs) in larger patients. This study aimed to evaluate the impact on image quality with respect to injected activity and patient habitus through Monte Carlo (MC) simulation.

View Article and Find Full Text PDF

Background: Dosimetry in radionuclide therapy often requires the calculation of average absorbed doses within and between spatial regions, for example, for voxel-based dosimetry methods, for paired organs, or across multiple tumors. Formation of such averages can be made in different ways, starting from different definitions.

Purpose: The aim of this study is to formally specify different averaging strategies for absorbed doses, and to compare their results when applied to absorbed dose distributions that are non-uniform within and between regions.

View Article and Find Full Text PDF

The aim was to theoretically and experimentally investigate recovery in SPECT images with objects of different shapes. Furthermore, the accuracy of volume estimation by thresholding was studied for those shapes.Nine spheres, nine oblate spheroids, and nine prolate spheroids phantom inserts were used, of which the six smaller spheres were part of the NEMA IEC body phantom and the rest of the inserts were 3D-printed.

View Article and Find Full Text PDF

Single-cell RNA sequencing combined with genome-scale metabolic models (GEMs) has the potential to unravel the differences in metabolism across both cell types and cell states but requires new computational methods. Here, we present a method for generating cell-type-specific genome-scale models from clusters of single-cell RNA-Seq profiles. Specifically, we developed a method to estimate the minimum number of cells required to pool to obtain stable models, a bootstrapping strategy for estimating statistical inference, and a faster version of the task-driven integrative network inference for tissues algorithm for generating context-specific GEMs.

View Article and Find Full Text PDF

Background: Somatostatin receptor Ga PET imaging is standard for evaluation of a patient's suitability for Lu peptide receptor radionuclide therapy of neuroendocrine tumours (NETs). The Ga PET serves to ensure sufficient somatostatin receptor expression, commonly evaluated qualitatively. The aim of this study is to investigate the quantitative relationships between uptake in Ga PET and absorbed doses in Lu therapy.

View Article and Find Full Text PDF

Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are formed by metabolism from the flame retardants polybrominated diphenyl ethers (PBDEs). In the aquatic environment, they are also produced naturally. OH-PBDEs are known for their potential to disrupt energy metabolism, the endocrine system, and the nervous system.

View Article and Find Full Text PDF

Background: In recent years, a lot of effort has been put in the enhancement of medical imaging using artificial intelligence. However, limited patient data in combination with the unavailability of a ground truth often pose a challenge to a systematic validation of such methodologies. The goal of this work was to investigate a recently proposed method for an artificial intelligence-based generation of synthetic SPECT projections, for acceleration of the image acquisition process based on a large dataset of realistic SPECT simulations.

View Article and Find Full Text PDF

The study aimed to create a pipeline from Monte Carlo simulated projections of a Gate PET system to reconstructed images. The PET system was modelled after the GE Discovery MI (DMI) PET/CT, and the simulated projections were reconstructed with the stand-alone reconstruction software CASToR. Attenuation correction, normalisation calibration, random estimation, and scatter estimation for the simulations were computed with in-house programs.

View Article and Find Full Text PDF

. This study considers the error distributions for time-integrated activity (TIA) of single-time-point (STP) methods for patient-specific dosimetry in radionuclide therapy..

View Article and Find Full Text PDF