Publications by authors named "Johan Garaude"

Different types of macrophages (Mφ) are involved in atherogenesis, including inflammatory Mφ and foamy Mφ (FM). Our previous study demonstrated that two-photon excited fluorescence (TPEF) imaging of NADH and FAD autofluorescence (AF) could distinguish experimental models that mimic the different atherosclerotic Mφ types. The present study assessed whether optical differences correlated with phenotypic and functional differences, potentially guiding diagnostic and therapeutic strategies.

View Article and Find Full Text PDF

The reprogramming of cellular metabolism has emerged as a major aspect of innate immune cell activation. Mitochondria, which are well known for their critical functions in cellular bioenergetics and metabolism, also serve innate immune purposes by providing specific signaling platforms. Latest advances in our understanding of innate immune receptor-mediated metabolic reprogramming have unraveled specific immune functions of mitochondrial metabolites that place mitochondrial metabolism and particularly the mitochondrial respiratory chain at the center of innate immunity.

View Article and Find Full Text PDF

Metabolic reprogramming of cells from the innate immune system is one of the most noteworthy topics in immunological research nowadays. Upon infection or tissue damage, innate immune cells, such as macrophages, mobilize various immune and metabolic signals to mount a response best suited to eradicate the threat. Current data indicate that both the immune and metabolic responses are closely interconnected.

View Article and Find Full Text PDF

Interaction of T cell with antigen-bearing dendritic cells (DC) results in T cell activation, but whether this interaction has physiological consequences on DC function is largely unexplored. Here we show that when antigen-bearing DCs contact T cells, DCs initiate anti-pathogenic programs. Signals of this interaction are transmitted from the T cell to the DC, through extracellular vesicles (EV) that contain genomic and mitochondrial DNA, to induce antiviral responses via the cGAS/STING cytosolic DNA-sensing pathway and expression of IRF3-dependent interferon regulated genes.

View Article and Find Full Text PDF

Oxidative phosphorylation (OXPHOS) generates ROS as a byproduct of mitochondrial complex I activity. ROS-detoxifying enzymes are made available through the activation of their antioxidant response elements (ARE) in their gene promoters. NRF2 binds to AREs and induces this anti-oxidant response.

View Article and Find Full Text PDF

Upon microbial infection, cells of the innate immune system undergo profound metabolic reprogramming in order to eradicate pathogens, promote inflammation, and eventually restore tissue homeostasis. Mitochondria are at the core of these adaptations, given their dual role as metabolic hubs and innate immune signaling platforms. The mitochondrial electron transport chain (ETC) is very well characterized at the genetic, molecular, structural, and biochemical level.

View Article and Find Full Text PDF

Sensing of microbe-associated molecular patterns or danger signals by innate immune receptors drives a complex exchange of information. Innate receptor signaling not only triggers transcriptional events but also induces profound changes in metabolic fluxes, redox balance, and metabolite abundance thereby influencing immune cell function. Mitochondria are at the core of metabolic adaptation to the changing environment.

View Article and Find Full Text PDF

Macrophages tightly scale their core metabolism after being activated, but the precise regulation of the mitochondrial electron-transport chain (ETC) and its functional implications are currently unknown. Here we found that recognition of live bacteria by macrophages transiently decreased assembly of the ETC complex I (CI) and CI-containing super-complexes and switched the relative contributions of CI and CII to mitochondrial respiration. This was mediated by phagosomal NADPH oxidase and the reactive oxygen species (ROS)-dependent tyrosine kinase Fgr.

View Article and Find Full Text PDF

We have previously shown that the development of a major histocompatibility complex class I (MHC-I)-deficient tumor was favored in protein kinase C-θ knockout (PKC-θ) mice compared to that occurring in wild-type mice. This phenomenon was associated with scarce recruitment of natural killer (NK) cells to the tumor site, as well as impaired NK cell activation and reduced cytotoxicity . Poly-inosinic:cytidylic acid (poly I:C) treatment activated PKC-θ in NK cells depending on the presence of a soluble factor produced by a different splenocyte subset.

View Article and Find Full Text PDF

Immunotherapies are particularly attractive when one wants to fight cancer since they aim at controlling the immune system in order to eradicate cancer cells and prevent tumor dissemination. While the clinical use of specific ligands for the innate immune receptors is promising, it is still facing several drawbacks when entering clinical trials. Nevertheless, recent advances in our understanding of the biology of these receptors constrain us to re-assess existing strategies and let foresee new approaches in the pipeline of therapies that would overcome current limitations.

View Article and Find Full Text PDF

The use of innate immune receptor agonists in cancer therapies has suffered from many drawbacks. Our recent observations suggest that some of these hurdles can be overcome by introducing flagellin into tumor cells to promote tumor antigen presentation by dendritic cells (DCs) and simultaneously trigger two types of pattern recognition receptors (PRRs).

View Article and Find Full Text PDF

Vav1 is expressed exclusively in hematopoietic cells and is required for T cell development and activation. Vav1-deficient mice show thymic hypocellularity due to a partial block during thymocyte development at the DN3 stage and between the double positive (DP) and single positive (SP) transition. Vav1 has been shown to play a significant role in several non-hematopoietic tumors but its role in leukemogenesis is unknown.

View Article and Find Full Text PDF

The protein kinase C-θ (PKCθ), which is essential for T cell function and survival, is also required for efficient anti-tumor immune surveillance. Natural killer (NK) cells, which express PKCθ, play a prominent role in this process, mainly by elimination of tumor cells with reduced or absent major histocompatibility complex class-I (MHC-I) expression. This justifies the increased interest of the use of activated NK cells in anti-tumor immunotherapy in the clinic.

View Article and Find Full Text PDF

Tumorigenesis implies adaptation of tumor cells to an adverse environment. First, developing tumors must acquire nutrients to ensure their rapid growth. Second, they must escape the attack from the host immune system.

View Article and Find Full Text PDF

Toll-like receptor (TLR) ligands are increasingly being used as adjuvants in cancer vaccine trials to harness innate immunity and prime effective antitumor immune responses. Despite some success, enhancing tumor antigen presentation, promoting a protective antitumor response, and overcoming the immunosuppressive tumor microenvironment pose considerable challenges that necessitate further improvements in vaccine design. Here, we show that expression of the TLR ligand flagellin within tumor cells constitutes an effective antitumor vaccination strategy that relies on simultaneous engagement of TLR5 and the Nod-like receptors (NLRs) NLRC4/NAIP5 (neuronal apoptosis inhibitory protein 5) by flagellin along with associative recognition of tumor antigen for optimal antigen presentation to T cells.

View Article and Find Full Text PDF

New insights on the role of costimulatory molecules in T helper cell function have yielded exciting alternatives to the development of therapeutic strategies that target T cell costimulatory pathways. Inducible costimulatory molecule (ICOS) signaling is now shown by Paulos and colleagues to support expansion of human T helper 17 (T(H)17) cells that could exert antitumor activity. Here we discuss (i) how these findings aid in our understanding of mechanisms that govern T(H)17 cell functions and (ii) the potential application of these new insights to the development of immunotherapies.

View Article and Find Full Text PDF

While inflammatory phagocytosis of microbial pathogens and non-inflammatory phagocytosis of apoptotic cells have each been studied extensively, the consequences of innate immune recognition of host cells undergoing apoptosis as a direct result of infection are unclear. In this situation, the innate immune system is confronted with mixed signals, those from apoptotic cells and those from the infecting pathogen. Nuclear receptor activation has been implicated downstream of apoptotic cell recognition while Toll-like receptors are the prototypical inflammatory receptors engaged during infection.

View Article and Find Full Text PDF

Tumor cell-based vaccines are currently used in clinical trails, but they are in general poorly immunogenic because they are composed of cell extracts or apoptotic cells. Live tumor cells should be much better Ags provided that they are properly processed by the host immune system. We show herein that stable expression of a small hairpin RNA for ERK5 (shERK5) decreases ERK5 levels in human and mouse leukemic cells and leads to their elimination by NK cells in vivo.

View Article and Find Full Text PDF

Adaptive immune responses rely on differentiation of CD4 T helper cells into subsets with distinct effector functions best suited for host defence against the invading pathogen. Interleukin (IL)-17-producing T helper cells (T(H)17) are a recently identified subset, separate from the T helper type 1 (T(H)1) and T helper type 2 (T(H)2) subsets. Synergy between the cytokines transforming growth factor-beta and IL-6 in vitro induces development of T(H)17 cells in mouse and human systems, whereas IL-23 supports expansion of these cells.

View Article and Find Full Text PDF

Protein kinase C-theta (PKCtheta) was initially isolated as an important PKC isoform expressed in T cells, although its expression is not restricted to these cells. Despite the central function of PKCtheta in several immune responses, its role in the antitumor response against MHC class I (MHC-I)-negative cells has not been investigated. This is an important issue because most tumor cells growing in vivo down-regulate MHC-I expression to escape the CTL-mediated response.

View Article and Find Full Text PDF

The cancer immunosurveillance hypothesis has found strong experimental support in recent years. It is believed that cytotoxic lymphocytes are important effectors in this process. PKCtheta plays an essential role in proliferation, activation and survival of these cells, but also proliferation and survival of leukemic T cells.

View Article and Find Full Text PDF

The AP-1 family member JunB is a critical regulator of T cell function. JunB is a transcriptional activator of various cytokine genes, such as IL-2, IL-4, and IL-10; however, the post-translational modifications that regulate JunB activity in T cells are poorly characterized. We show here that JunB is conjugated with small ubiquitin-like modifier (SUMO) on lysine 237 in resting and activated primary T cells and T cell lines.

View Article and Find Full Text PDF

MAPK cascades play a central role in the cellular response to the environment. The pathway involving the MAPK ERK5 mediates growth factor- and stress-induced intracellular signaling that controls proliferation or survival depending upon the cell context. In this study, we show that reducing ERK5 levels with a specific small hairpin RNA 5 (shERK5) reduced cell viability, sensitized cells to death receptor-induced apoptosis, and blocked the palliative effects of phorbol ester in anti-Fas Ab-treated cells.

View Article and Find Full Text PDF