Publications by authors named "Johan Foster"

Article Synopsis
  • Wood is a sustainable material but faces challenges like poor mechanical performance and moisture sensitivity, limiting its use in advanced engineering.
  • Researchers developed a method to fabricate densified wood using deep eutectic solvents, enhancing its strength and water resistance significantly.
  • The densified wood exhibits over 50% increased flexural strength and 100% improved surface hardness, making it a promising alternative for structural applications.
View Article and Find Full Text PDF

Subcritical water extraction (SWE) is an emerging green and efficient hydrothermal technology, that offers superior performance in active material extraction, scalability, and reduction of harsh process chemicals, in biomass conversion. Regarding biomaterials, traditional isolation methods for cellulose nanocrystals (CNCs) are reliant on harsh chemicals (, strong acid), which are expensive with little to no recyclability. This paper explores SWE as a nanotechnology platform to produce CNCs under the principle of "less is more" - by using low content (1 wt%) of phosphoric acid under subcritical conditions.

View Article and Find Full Text PDF

Biosurfactants (BSFs) are molecules produced by microorganisms from various carbon sources, with applications in bioremediation and petroleum recovery. However, the production cost limits large-scale applications. This study optimized BSFs production by Bacillus velezensis (strain MO13) using residual glycerin as a substrate.

View Article and Find Full Text PDF

As integral parts of fuel cells, polymer electrolyte membranes (PEM) facilitate the conversion of hydrogen's chemical energy into electricity and water. Unfortunately, commercial PEMs are associated with high costs, limited durability, variable electrochemical performance and are based on perfluorinated polymers that persist in the environment. Nanocellulose-based PEMs have emerged as alternative options given their renewability, thermal and mechanical stability, low-cost, and hydrophilicity.

View Article and Find Full Text PDF

A superhydrophobic textile coating, applied by using a home drying machine, was developed as an aqueous dispersion of waxes that were extracted from recycled Christmas trees. Because the bulk extraction of waxes yielded a mixture of hydrophobic and hydrophilic compounds, a purification process was tested to determine if removing noncrystallizing wax components would enhance the performance of the coating. The performances of coatings created from the crude and enriched extracts were compared, and no significant difference in hydrophobicity was found.

View Article and Find Full Text PDF

In this study, we successfully developed a screen-printed pH-responsive intelligent label using low molecular weight chitosan grafted with phenol red (LCPR) as a colorant for screen printing ink. The LCPR was synthesized via a Mannich reaction, and its successful grafting was confirmed through FT-IR, UV-vis, and NMR spectroscopy. The LCPR exhibited lower crystallinity and thermal stability compared to low molecular weight chitosan (LC) and demonstrated zwitterionic behavior.

View Article and Find Full Text PDF

Redox flow batteries (RFBs) are increasingly being considered for a wide range of energy storage applications, and such devices rely on proton exchange membranes (PEMs) to function. PEMs are high-cost, petroleum-derived polymers that often possess limited durability, variable electrochemical performance, and are linked to discharge of perfluorinated compounds. Alternative PEMs that utilize biobased materials, including lignin and sulfonated lignin (SL), low-cost byproducts of the wood pulping process, have struggled to balance electrochemical performance with dimensional stability.

View Article and Find Full Text PDF

Stomatal movement, initiated by specialized epidermal cells known as guard cells (GCs), plays a pivotal role in plant gas exchange and water use efficiency. Despite protocols existing for isolating GCs through proplasting for carrying out biochemical, physiological, and molecular studies, protocals for isolating GCs with their cell walls still intact have been lacking in the literature. In this paper, we introduce a method for the isolation of complete GCs from Vicia faba and show their membrane to remain impermeable through propidium iodide staining.

View Article and Find Full Text PDF

The engineering thermoplastics industry has largely limited the use of natural fiber reinforcements due to their susceptibility to low-onset thermal degradation and water absorption. Therefore, in order to utilize these economically viable and environmentally friendly materials effectively through common composite fabrication methods such as hot pressing, safeguarding them from thermal degradation becomes essential. This work presents a viable industrially technique called sequential ball milling for processing unbleached softwood kraft pulp fibers (PF) with an engineering thermoplastics polyamide 6 (PA6) with high melting temperatures (>220 °C).

View Article and Find Full Text PDF

Driven by long-term persistence and adverse health impacts of legacy perfluorooctanoic acid (PFOA), production has shifted towards shorter chain analogs (C4, perfluorobutanoic acid (PFBA)) or fluorinated alternatives such as hexafluoropropylene oxide dimer acid (HFPO-DA, known as GenX) and 6:2 fluorotelomer carboxylic acid (6:2 FTCA). Yet, a thorough understanding of treatment processes for these alternatives is limited. Herein, we conducted a comprehensive study using an electrochemical approach with a boron doped diamond anode in NaSO electrolyte for the remediation of PFOA common alternatives, i.

View Article and Find Full Text PDF

Novel superhydrophobic coatings, that are both biodegradable and biosourced, have the potential to revolutionize the water-repellent coating industry. Here, water-repellent coatings were prepared from commercially unavailable plant waxes, isolated using solvent extraction and characterized using DSC, GC-MS and DLS. In the first stage, a plant survey was conducted to identify an ideal plant source for the final spray, in which Whatman filter paper was submerged in a wax-solvent solution with recrystallization occurring upon air-drying.

View Article and Find Full Text PDF

Fiber cement reinforced with pulp fibers is one of the key drivers for the decarbonization of nonstructural building materials, where the inclusion of sustainable pulp fibers at high proportions (i.e., > 8 wt %) renders poor workability of fiber-cement slurry with a concomitant loss in mechanical strength.

View Article and Find Full Text PDF

Combustion is often difficult to spatially direct or tune associated kinetics-hence a run-away reaction. Coupling pyrolytic chemical transformation to mass transport and reaction rates (Damköhler number), however, we spatially directed ignition with concomitant switch from combustion to pyrolysis (low oxidant). A 'surface-then-core' order in ignition, with concomitant change in burning rate,is therefore established.

View Article and Find Full Text PDF

Pulp fibre reinforced cement (fibre cement) has the potential to become a forerunner in mitigating the carbon dioxide (CO2) footprint of non-structural materials for residential and commercial structures. However, one of the significant bottlenecks in fibre cement is its poor chemical stability in the alkaline cement matrix. To date, probing the health of pulp fibre in cement is lengthy and laborious, requiring mechanical and chemical separations.

View Article and Find Full Text PDF

Bringing biobased nanomaterials into polymer manufacturing is essential to enhance polymers' properties and address the challenges posed by plastic waste. Using polymers such as polyamide 6 (PA6) in advanced industries, e.g.

View Article and Find Full Text PDF

Carbonated hydroxyapatite (CHAp) adsorbent material was prepared from snail shells and phosphate-containing solution using a wet chemical deposition method. The CHAp adsorbent material was investigated to adsorb aqua Fe(II) complex; [Fe(HO)] from simulated iron contaminated water for potential iron remediation application. The CHAp was characterized before and after adsorption using infrared (IR) and Raman spectroscopy.

View Article and Find Full Text PDF

A novel nanocomposite comprised of cellulose nanocrystals (CNCs) and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) oxidized cellulose nanofibers (TOCNFs) was prepared through solution casting to evaluate potential improvements of the mechanical performance compared to individual reinforcements alone. Such materials can be implemented as mechanical reinforcements in polymer composites, especially when less weight is desired. Dissipative particle dynamics (DPD) simulations, in combination with polarized light microscopy and atomic force microscopy, were analyzed to evaluate the morphology of these combined cellulose nanomaterial (CNM) films.

View Article and Find Full Text PDF

This work reports on the use of low-cost pineapple leaf fiber (PALF) as an alternative reinforcing material to the established, commonly used material for prosthetic socket fabrication which is carbon-fiber-reinforced composite (CFRC) due to the high strength and stiffness of carbon fiber. However, the low range of loads exerted on a typical prosthetic socket (PS) in practice suggests that the use of CFRC may not be appropriate because of the high material stiffness which can be detrimental to socket-limb load transfer. Additionally, the high cost of carbon fiber avails opportunities to look for an alternative material as a reinforcement for composite PS development.

View Article and Find Full Text PDF
Article Synopsis
  • The aspect ratio (AR) of filler particles significantly influences the mechanical properties of particle-reinforced polymer composites, but studying its effects has been difficult due to challenges in controlling AR while keeping other properties constant.
  • Researchers synthesized a zirconium-based metal-organic framework (MOF) named PCN-222 with controlled ARs ranging from 3.4 to 54, allowing the exploration of its mechanical reinforcement in poly(methyl methacrylate) (PMMA) composites without altering chemical properties.
  • The study found that while both elastic and dynamic moduli increased with higher AR and particle concentrations, there was a decrease in mechanical properties at higher loading levels, with the Halpin-Tsai model well-fitting low loading data, and also
View Article and Find Full Text PDF

Particle size is a key parameter that must be measured to ensure reproducible production of cellulose nanocrystals (CNCs) and to achieve reliable performance metrics for specific CNC applications. Nevertheless, size measurements for CNCs are challenging due to their broad size distribution, irregular rod-shaped particles, and propensity to aggregate and agglomerate. We report an interlaboratory comparison (ILC) that tests transmission electron microscopy (TEM) protocols for image acquisition and analysis.

View Article and Find Full Text PDF

The 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) oxidation of cellulose, when mediated with Oxone (KHSO), can be performed simply and under mild conditions. Furthermore, the products of the reaction can be isolated into two major components: Oxone-mediated TEMPO-oxidized cellulose nanomaterials Form I and Form II (OTO-CNM Form I and Form II). This study focuses on the characterization of the properties of OTO-CNMs.

View Article and Find Full Text PDF

This study analyzes and evaluates the use of cellulose nanocrystals (CNCs), stiff nanosized natural materials that have been modified to mimic heparin. These CNCs are simple polysaccharides with a similar backbone structure to heparin, which when modified reduces coagulation and potentially the long-term effects of solution-based anticoagulants. Thus, CNCs represent an ideal foundation for generating materials biocompatible with blood.

View Article and Find Full Text PDF

Effective therapeutic delivery of peptide and protein drugs is challenged by short in vivo half-lives due to rapid degradation. Sustained release formulations of αCT1, a 25 amino acid peptide drug, would afford lower dosing frequency in indications that require long term treatment, such as chronic wounds and cancers. In this study, rhodamine B (RhB) was used as a model drug to develop and optimize a double emulsion-solvent evaporation method of poly(lactic-co-glycolic acid) (PLGA) nanoparticle synthesis.

View Article and Find Full Text PDF

Bioprinting has advanced drastically in the last decade, leading to many new biomedical applications for tissue engineering and regenerative medicine. However, there are still a myriad of challenges to overcome, with vast amounts of research going into bioprinter technology, biomaterials, cell sources, vascularization, innervation, maturation, and complex 4D functionalization. Currently, stereolithographic bioprinting is the primary technique for polymer resin bioinks.

View Article and Find Full Text PDF

bioactive compounds have been shown to contain antioxidant properties. The extracts from the same plant are used in traditional medical practices to treat various diseases with impressive outcomes. In this study, ionic mobility in cells in the presence of seed extracts was monitored using electrochemical detection methods to link cell death to ionic imbalance.

View Article and Find Full Text PDF