The increased interest in studying membrane proteins has led to the development of new membrane mimics such as bicelles and nanodiscs. However, only limited knowledge is available of how these membrane mimics are affected by embedded proteins and how well they mimic a lipid bilayer. Herein, we present molecular dynamics simulations to elucidate structural and dynamic properties of small bicelles and compare them to a large alignable bicelle, a small nanodisc, and a lipid bilayer.
View Article and Find Full Text PDFThe human serotonin transporter (hSERT), the human dopamine transporter (hDAT), and the human norepinephrine transporter (hNET) facilitate the active uptake of the neurotransmitters serotonin, dopamine, and norepinephrine from the synaptic cleft. Drugs of abuse such as MDMA (streetname "ecstasy") and certain 1-phenyl-piperazine (PP) analogs such as 1-(3-chlorophenyl)-piperazine (mCPP) elicit their stimulatory effect by elevating the synaptic concentration of serotonin by blocking or reversing the normal transport activity of hSERT. Recent data suggest that certain analogs of PP may be able to counteract the addictive effect of cocaine.
View Article and Find Full Text PDFMembrane mimics such as micelles and bicelles are widely used in experiments involving membrane proteins. With the aim of being able to carry out molecular dynamics simulations in environments comparable to experimental conditions, we set out to test the ability of both coarse grained and atomistic resolution force fields to model the experimentally observed behavior of the lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC), which is a widely used lipid for biophysical characterization of membrane proteins. It becomes clear from our results that a satisfactory modeling of DHPC aggregates in solution poses different demands to the force field than do the modeling of bilayers.
View Article and Find Full Text PDF