While the antiviral response during measles virus (MeV) infection is documented, the contribution of the hosting cell type to the type I interferon (IFN-alpha/beta) response is still not clearly established. Here, we report that a signature heterogeneity of the IFN-alpha/beta response according to the cell type. The MeV tropism dictated by the expression of appropriate cellular receptor appeared to be crucial for epithelial cells.
View Article and Find Full Text PDFMeasles is a highly contagious childhood disease associated with an immunological paradox: although a strong virus-specific immune response results in virus clearance and the establishment of a life-long immunity, measles infection is followed by an acute and profound immunosuppression leading to an increased susceptibility to secondary infections and high infant mortality. In certain cases, measles is followed by fatal neurological complications. To elucidate measles immunopathology, we have analyzed the immune response to measles virus in mice transgenic for the measles virus receptor, human CD150.
View Article and Find Full Text PDFBackground: Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt).
Results: The adaptation of a measles virus isolate (G954-PBL) by 13 passages in Vero cells induced a strong attenuation of this strain in vivo.
Measles virus (MV) causes transient but profound immunosuppression resulting in increased susceptibility to secondary bacterial and viral infections. Due to the development of these opportunistic infections, measles remains the leading vaccine-preventable cause of child death worldwide. Different immune abnormalities have been associated with measles, including disappearance of delayed-type hypersensitivity reactions, impaired lymphocyte and antigen-presenting cell functions, down-regulation of pro-inflammatory interleukin 12 production and altered interferon alpha/beta signalling pathways.
View Article and Find Full Text PDF