Inversion of in situ borehole gamma spectrometry data is a faster and relatively less laborious method for calculating the vertical distribution of radioactivity in soil than conventional soil sampling method. However, the efficiency calculation of a detector for such measurements is a challenging task due to spatial and temporal variation of the soil properties and other measurement parameters. In this study, the sensitivity of different soil characteristics and measurement parameters on simulated efficiencies for a 662 keV photon peak were investigated.
View Article and Find Full Text PDFEnvironmental contamination by radioactive materials can be characterized by in situ gamma surface measurements. During such measurements, the field of view of a gamma detector can be tens of meters wide, resulting in a count rate that integrates the signal over a large measurement support volume/area. The contribution of a specific point to the signal depends on various parameters, such as the height of the detector above the ground surface, the gamma energy and the detector properties, etc.
View Article and Find Full Text PDFA 3.81 × 3.81 cm LaBr(Ce) detector based portable measurement setup has been developed for in situ gamma spectrometric survey of a contaminated site.
View Article and Find Full Text PDFAn in situ borehole gamma logging method using a LaBr gamma detector has been developed to characterize aCs contaminated site. The activity-depth distribution of Cs was derived by inversion of the in situ measurement data using two different least squares methods, (i) Least squares optimization (LSO) and (ii) Tikhonov regularization. The regularization parameter (λ) of the Tikhonov regularization method was estimated using three different methods i.
View Article and Find Full Text PDFFrom early April 2020, wildfires raged in the highly contaminated areas around the Chernobyl nuclear power plant (CNPP), Ukraine. For about 4 weeks, the fires spread around and into the Chernobyl exclusion zone (CEZ) and came within a few kilometers of both the CNPP and radioactive waste storage facilities. Wildfires occurred on several occasions throughout the month of April.
View Article and Find Full Text PDFIn April 2020, several wildfires took place in and around the Chernobyl exclusion zone. These fires reintroduced radioactive particles deposited during the 1986 Chernobyl disaster into the atmosphere, causing concern about a possible radiation hazard. Several countries and several stations of the International Monitoring System measured increased Cs137 levels.
View Article and Find Full Text PDFA reliable detector model is needed for Monte Carlo efficiency calibration. A LaBr(Ce) detector model was optimized and verified using different radioactive sources (Am,Ba,Cs,Co andEu) and geometries (point, extended and surface). PENELOPE and MCNP were used for Monte Carlo simulations.
View Article and Find Full Text PDFOne of the major uncertainties in dispersion-based simulations at the local scale is the representation of terrain effects. The aim of the current study is to quantify this type of uncertainty for dose-rate predictions over a homogeneous forest cover. At the Belgian reactor BR1, situated in a forested environment, ambient gamma-dose-rate data from routine Ar-41 releases are available in the first 300 m from the release point.
View Article and Find Full Text PDFThe International Monitoring System is being set up aiming to detect violations of the Comprehensive Nuclear-Test-Ban Treaty. Suspicious radioxenon detections were made by the International Monitoring System after the third announced nuclear test conducted by the Democratic People's Republic of Korea (DPRK). In this paper, inverse atmospheric transport and dispersion modelling was applied to these detections, to determine the source location, the release term and its associated uncertainties.
View Article and Find Full Text PDFThe capability of the noble gas component of the International Monitoring System as a verification tool for the Comprehensive Nuclear-Test-Ban Treaty is deteriorated by a background of radioxenon emitted by civilian sources. One of the possible approaches to deal with this issue, is to simulate the daily radioxenon concentrations from these civilian sources at noble gas stations by using atmospheric transport models. In order to accurately quantify the contribution from these civilian sources, knowledge on the releases is required.
View Article and Find Full Text PDFOn 6 January 2016, the Democratic People's Republic of Korea announced to have conducted its fourth nuclear test. Analysis of the corresponding seismic waves from the Punggye-ri nuclear test site showed indeed that an underground man-made explosion took place, although the nuclear origin of the explosion needs confirmation. Seven weeks after the announced nuclear test, radioactive xenon was observed in Japan by a noble gas measurement station of the International Monitoring System.
View Article and Find Full Text PDFThe PREPARE project aimed closing gaps identified in nuclear and radiological preparedness in Europe following the first evaluation of the Fukushima disaster. With 46 partners from Europe and Japan, it collected the key players in the area of emergency management and rehabilitation preparedness. Starting from February 2013, the project ended in January 2016.
View Article and Find Full Text PDFKnowledge on the global radioxenon background is imperative for the Comprehensive Nuclear-Test-Ban Treaty verification. In this paper, the capability to simulate the radioxenon background from regional sources is assessed at two International Monitoring System stations in Europe. An ensemble dispersion modeling approach is used to quantify uncertainty by making use of a subset of the Ensemble Prediction System of the European Centre for Medium-Range Weather Forecasts.
View Article and Find Full Text PDFIn order to improve the simulation of the near-range atmospheric dispersion of radionuclides, computational fluid dynamics is becoming increasingly popular. In the current study, Large-Eddy Simulation is used to examine the time-evolution of the turbulent dispersion of radioactive gases in the atmospheric boundary layer, and it is coupled to a gamma dose rate model that is based on the point-kernel method with buildup factors. In this way, the variability of radiological dose rate from cloud shine due to instantaneous turbulent mixing processes can be evaluated.
View Article and Find Full Text PDFThe PREPARE project that started in February 2013 and will end at the beginning of 2016 aims to close gaps that have been identified in nuclear and radiological preparedness in Europe following the first evaluation of the Fukushima disaster. Among others, the project will address the review of existing operational procedures for dealing with long-lasting releases and cross-border problems in radiation monitoring and food safety and further develop missing functionalities in decision support systems (DSS) ranging from improved source-term estimation and dispersion modelling to the inclusion of hydrological pathways for European water bodies. In addition, a so-called Analytical Platform will be developed exploring the scientific and operational means to improve information collection, information exchange and the evaluation of such types of disasters.
View Article and Find Full Text PDF