The incorporation of nitrogen atoms into the aromatic ring of phenolic compounds has enabled the development of some of the most potent radical-trapping antioxidants ever reported. These compounds, 3-pyridinols and 5-pyrimidinols, have stronger O-H bonds than equivalently substituted phenols, but possess similar reactivities toward autoxidation chain-carrying peroxyl radicals. These attributes suggest that 3-pyridinols and 5-pyrimidinols will be particularly effectiveco-antioxidants when used in combination with more common, but less reactive, phenolic antioxidants such as 2,6-di-tert-butyl-4-methylphenol (BHT), which we demonstrate herein.
View Article and Find Full Text PDFA convenient approach to 3-pyridinols and 5-pyrimidinols via a two-step Cu-catalyzed benzyloxylation/catalytic hydrogenation sequence is presented. The corresponding 3-pyridinamines and 5-pyrimidinamines can be prepared in an analogous sequence utilizing benzylamine in lieu of benzyl alcohol. The radical-scavenging ability of these derivatives are preliminarily explored and reveal that the increased acidities of the pyridinols and pyrimidinols render them susceptible to more significant kinetic solvent effects when compared to phenols.
View Article and Find Full Text PDFCholesterol 5alpha-hydroperoxide, the major product of 1O2-oxidation of cholesterol, readily undergoes acid-catalyzed (Hock) cleavage of the C5-C6 bond to yield the 5,6-secosterol ketoaldehyde and the product of its intramolecular aldolization. These cholesterol oxidation products have long been thought to arise solely from ozonolysis of cholesterol, prompting the recent suggestion that ozone is produced in humans following their identification in arterial and brain tissue extracts.
View Article and Find Full Text PDFThe synthesis and study of a series of 6-substituted-2,4-dimethyl-3-pyridinols having interesting antioxidant properties is reported. The general synthetic strategy leading to the compounds involved a low-temperature aryl bromide-to-alcohol conversion as the last step. 2,4-dimethyl-3-pyridinol (1a), 2,4,6-trimethyl-3-pyridinol (1b), and 2,4-dimethyl-6-(dimethylamino)-3-pyridinol (1d) were thus prepared from the corresponding 3-bromopyridine precursor.
View Article and Find Full Text PDF