Publications by authors named "Johan B Fagman"

Pancreatic cancer is a devastating and lethal human malignancy with no curable chemo-treatments available thus far. More than 90% of pancreatic tumors are formed from ductal epithelium as pancreatic ductal adenocarcinoma (PDAC), which often accompany with the expression of mutant . The incidences of pancreatic cancer are expected to increase rapidly worldwide in the near future, due to environmental pollution, obesity epidemics and etc.

View Article and Find Full Text PDF

Testosterone deficiency in men is associated with increased atherosclerosis burden and increased cardiovascular risk. In male mice, testosterone deficiency induced by castration increases atherosclerosis as well as mature B cell numbers in spleen. As B cells are potentially pro-atherogenic, we hypothesized that there may be a link between these effects.

View Article and Find Full Text PDF

Background And Aims: Pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide. Checkpoint immunotherapy has not yet shown encouraging results in pancreatic cancer possibly because of a poor immunogenicity and/or an immune suppressive microenvironment. The aim of this study was to develop patient-derived xenograft (PDX) models, compare their genetics to the original biopsies, and assess if autologous tumor-infiltrating lymphocytes (TILs) would have antitumoral activity in pancreatic cancer.

View Article and Find Full Text PDF

Inflammatory signaling through prostaglandin E2 receptor subtype 2 (EP2) is associated with malignant tumor growth in both experimental models and cancer patients. Thus, the absence of EP2 receptors in host tissues appears to reduce tumor growth and systemic inflammation by inducing major alterations in gene expression levels across tumor tissue compartments. However, it is not yet well‑established how signaling pathways in tumor tissue relate to simultaneous signaling alterations in the surrounding tumor‑stroma, at conditions of reduced disease progression due to decreased host inflammation.

View Article and Find Full Text PDF

Cancer is a disease characterized by uncontrolled cell proliferation, but the precise pathological mechanisms underlying tumorigenesis often remain to be elucidated. In recent years, condensates formed by phase separation have emerged as a new principle governing the organization and functional regulation of cells. Increasing evidence links cancer-related mutations to aberrantly altered condensate assembly, suggesting that condensates play a key role in tumorigenesis.

View Article and Find Full Text PDF

Androgens have profound effects on T cell homeostasis, including regulation of thymic T lymphopoiesis (thymopoiesis) and production of recent thymic emigrants (RTEs), i. e., immature T cells that derive from the thymus and continue their maturation to mature naïve T cells in secondary lymphoid organs.

View Article and Find Full Text PDF

The effects of EGFR and COX-2 protein overexpression on clinical outcomes in pancreatic ductal adenocarcinoma (PDAC) patients remains unclear. Therefore, the aim of the present study was to evaluate the protein expression of epithelial growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) in tumor cells in surgically resected PDAC, in comparison with clinicopathological characteristics and clinical outcomes. Immunohistochemical staining of formalin-fixed paraffin-embedded tissue derived from surgically resected tumors was performed.

View Article and Find Full Text PDF

Objective: Androgen deprivation therapy has been associated with increased cardiovascular risk in men. Experimental studies support that testosterone protects against atherosclerosis, but the target cell remains unclear. T cells are important modulators of atherosclerosis, and deficiency of testosterone or its receptor, the AR (androgen receptor), induces a prominent increase in thymus size.

View Article and Find Full Text PDF

Testosterone deficiency in men is associated with increased risk for autoimmunity and increased B cell numbers through unknown mechanisms. Here we show that testosterone regulates the cytokine BAFF, an essential survival factor for B cells. Male mice lacking the androgen receptor have increased splenic B cell numbers, serum BAFF levels and splenic Baff mRNA.

View Article and Find Full Text PDF

Despite expression of oncogenic KRAS, premalignant pancreatic intraepithelial neoplasia 1 (PanIN1) lesions rarely become fully malignant pancreatic ductal adenocarcinoma (PDAC). The molecular mechanisms through which established risk factors, such as chronic pancreatitis, acinar cell damage, and/or defective autophagy increase the likelihood of PDAC development are poorly understood. We show that accumulation of the autophagy substrate p62/SQSTM1 in stressed Kras acinar cells is associated with PDAC development and maintenance of malignancy in human cells and mice.

View Article and Find Full Text PDF

2-Methoxyestradiol (2ME2), a metabolite of 17β-estradiol (E2), exerts bone sparing effects in animal models. We hypothesized that the underlying mechanism is back conversion of 2ME2 to E2, which subsequently acts via estrogen receptor (ER)α. We measured serum E2 levels in orchidectomized wild-type (WT) mice treated with 2ME2 66.

View Article and Find Full Text PDF

Nf1 mutations or deletions are suggested to underlie the tumor predisposition of NF1 (neurofibromatosis type 1) and few treatments are available for treating NF1 patients with advanced malignant tumors. Aberrant activation of Ras in Nf1-deficient conditions is responsible for the promotion of tumorigenesis in NF1. PKC is proven to be an important factor in supporting the viability of Nf1-defected cells, but the molecular mechanisms are not fully understood.

View Article and Find Full Text PDF

Intimal hyperplasia is a vascular pathological process involved in the pathogenesis of atherosclerosis. Data suggest that T, the most important sex steroid hormone in males, protects men from atherosclerotic cardiovascular disease. T mainly acts via the androgen receptor (AR), and in this study we evaluated formation of intimal hyperplasia in male AR knockout (ARKO) mice using a vascular injury model.

View Article and Find Full Text PDF

Pancreatic acinar cells possess very high protein synthetic rates as they need to produce and secrete large amounts of digestive enzymes. Acinar cell damage and dysfunction cause malnutrition and pancreatitis, and inflammation of the exocrine pancreas that promotes development of pancreatic ductal adenocarcinoma (PDAC), a deadly pancreatic neoplasm. The cellular and molecular mechanisms that maintain acinar cell function and whose dysregulation can lead to tissue damage and chronic pancreatitis are poorly understood.

View Article and Find Full Text PDF

Androgens have important cardiometabolic actions in males, but their metabolic role in females is unclear. To determine the physiologic androgen receptor (AR)-dependent actions of androgens on atherogenesis in female mice, we generated female AR-knockout (ARKO) mice on an atherosclerosis-prone apolipoprotein E (apoE)-deficient background. After 8 weeks on a high-fat diet, but not on a normal chow diet, atherosclerosis in aorta was increased in ARKO females (+59% vs.

View Article and Find Full Text PDF

Ovariectomy/estrogen deficiency causes selective apoptosis of the serous epithelial cells of the submandibular glands (SMG) in female mice. Because such apoptosis does not occur in healthy, estrogen-deficient male mice, it was hypothesized that dihydrotestosterone (DHT) protects epithelial SMG cells against apoptosis. The antiapoptotic effect of DHT on human epithelial HSG cells exposed to tumor necrosis factor-α and cycloheximide was studied.

View Article and Find Full Text PDF