Publications by authors named "Johan Ankarklev"

Article Synopsis
  • Malaria parasites adapt by digesting host hemoglobin to obtain essential amino acids, leading to a connection between nutrient availability and how genes are expressed.
  • The study finds that certain tRNAs, which help decode amino acids that are not provided enough by hemoglobin, are underexpressed, creating a mismatch for optimal translation.
  • Proliferation-related genes that rely heavily on these tRNAs can have their protein synthesis regulated during times of nutrient stress, showcasing how metabolic adaptation influences protein evolution in these parasites.
View Article and Find Full Text PDF

The Plasmodium falciparum life cycle includes obligate transition between a human and mosquito host. Gametocytes are responsible for transmission from the human to the mosquito vector where gamete fusion followed by meiosis occurs. To elucidate how male and female gametocytes differentiate in the absence of sex chromosomes, we perform FACS-based cell enrichment of a P.

View Article and Find Full Text PDF

Upon infecting its vertebrate host, the malaria parasite initially invades the liver where it undergoes massive replication, whilst remaining clinically silent. The coordination of host responses across the complex liver tissue during malaria infection remains unexplored. Here, we perform spatial transcriptomics in combination with single-nuclei RNA sequencing over multiple time points to delineate host-pathogen interactions across Plasmodium berghei-infected liver tissues.

View Article and Find Full Text PDF

Introduction: Tumor-associated macrophages may act to either limit or promote tumor growth, yet the molecular basis for either path is poorly characterized.

Methods: We use a larval model that expresses a dominant-active version of the Ras-oncogene (Ras) to study dysplastic growth during early tumor progression. We performed single-cell RNA-sequencing of macrophage-like hemocytes to characterize these cells in tumor- compared to wild-type larvae.

View Article and Find Full Text PDF

Dendritic cells and macrophages are integral parts of the innate immune system and gatekeepers against infection. The protozoan pathogen, , is known to hijack host immune cells and modulate their immune response, making it a compelling model to study host-pathogen interactions. Here we utilize single cell Dual RNA-seq to parse out heterogeneous transcription of mouse bone marrow-derived dendritic cells (BMDCs) infected with two distinct genotypes of parasites, over multiple time points post infection.

View Article and Find Full Text PDF

Malaria inflicts the highest rate of morbidity and mortality among the vector-borne diseases. The dramatic bottleneck of parasite numbers that occurs in the gut of the obligatory mosquito vector provides a promising target for novel control strategies. Using single-cell transcriptomics, we analyzed Plasmodium falciparum development in the mosquito gut, from unfertilized female gametes through the first 20 h after blood feeding, including the zygote and ookinete stages.

View Article and Find Full Text PDF

The liver is a major entry point and gatekeeper for invasive pathogens. However, high-resolution, spatiotemporal transcriptomic analysis of host-pathogen interactions has remained challenging. Afriat et al.

View Article and Find Full Text PDF

The coronavirus disease 2019, COVID-19, is a complex disease with a wide range of symptoms from asymptomatic infections to severe acute respiratory syndrome with lethal outcome. Individual factors such as age, sex, and comorbidities increase the risk for severe infections, but other aspects, such as genetic variations, are also likely to affect the susceptibility to SARS-CoV-2 infection and disease severity. Here, we used a human 3D lung cell model based on primary cells derived from multiple donors to identity host factors that regulate SARS-CoV-2 infection.

View Article and Find Full Text PDF

Reconstruction of heterogeneity through single cell transcriptional profiling has greatly advanced our understanding of the spatial liver transcriptome in recent years. However, global transcriptional differences across lobular units remain elusive in physical space. Here, we apply Spatial Transcriptomics to perform transcriptomic analysis across sectioned liver tissue.

View Article and Find Full Text PDF

Mosquito immune cells, known as hemocytes, are integral to cellular and humoral responses that limit pathogen survival and mediate immune priming. However, without reliable cell markers and genetic tools, studies of mosquito immune cells have been limited to morphological observations, leaving several aspects of their biology uncharacterized. Here, we use single-cell RNA sequencing (scRNA-seq) to characterize mosquito immune cells, demonstrating an increased complexity to previously defined prohemocyte, oenocytoid, and granulocyte subtypes.

View Article and Find Full Text PDF

Background: Understanding of the impacts of climatic variability on human health remains poor despite a possibly increasing burden of vector-borne diseases under global warming. Numerous socioeconomic variables make such studies challenging during the modern period while studies of climate-disease relationships in historical times are constrained by a lack of long datasets. Previous studies have identified the occurrence of malaria vectors, and their dependence on climate variables, during historical times in northern Europe.

View Article and Find Full Text PDF

Malaria parasites invade and replicate within red blood cells (RBCs), extensively modifying their structure and gaining access to the extracellular environment by placing the plasmodial surface anion channel (PSAC) into the RBC membrane. Expression of members of the cytoadherence linked antigen gene 3 () family is required for PSAC activity, a process that is regulated epigenetically. PSAC is a well-established route of uptake for large, hydrophilic antimalarial compounds, and parasites can acquire resistance by silencing gene expression, thereby reducing drug uptake.

View Article and Find Full Text PDF

Malaria parasites have a complex life cycle that includes specialized stages for transmission between their mosquito and human hosts. These stages are an understudied part of the lifecycle yet targeting them is an essential component of the effort to shrink the malaria map. The human parasite Plasmodium falciparum is responsible for the majority of deaths due to malaria.

View Article and Find Full Text PDF

The malaria parasite has a complex lifecycle, including several events of differentiation and stage progression, while actively evading immunity in both its mosquito and human hosts. Important parasite gene expression and regulation during these events remain hidden in rare populations of cells. Here, we combine a capillary-based platform for cell isolation with single-cell RNA-sequencing to transcriptionally profile 165 single infected red blood cells (iRBCs) during the intra-erythrocytic developmental cycle (IDC).

View Article and Find Full Text PDF

Molecular epidemiology and genotyping studies of the parasitic protozoan Giardia intestinalis have proven difficult due to multiple factors, such as low discriminatory power in the commonly used genotyping loci, which has hampered molecular analyses of outbreak sources, zoonotic transmission and virulence types. Here we have focused on assemblage A Giardia and developed a high-resolution assemblage-specific multilocus sequence typing (MLST) method. Analyses of sequenced G.

View Article and Find Full Text PDF

Malaria remains one of the greatest public health challenges worldwide, particularly in sub-Saharan Africa. The clinical outcome of individuals infected with Plasmodium falciparum parasites depends on many factors including host systemic inflammatory responses, parasite sequestration in tissues and vascular dysfunction. Production of pro-inflammatory cytokines and chemokines promotes endothelial activation as well as recruitment and infiltration of inflammatory cells, which in turn triggers further endothelial cell activation and parasite sequestration.

View Article and Find Full Text PDF

Background: The diarrhea-causing protozoan Giardia intestinalis makes up a species complex of eight different assemblages (A-H), where assemblage A and B infect humans. Comparative whole-genome analyses of three of these assemblages have shown that there is significant divergence at the inter-assemblage level, however little is currently known regarding variation at the intra-assemblage level. We have performed whole genome sequencing of two sub-assemblage AII isolates, recently axenized from symptomatic human patients, to study the biological and genetic diversity within assemblage A isolates.

View Article and Find Full Text PDF

The mechanisms underlying sexual stage switching in Plasmodium spp. have hitherto remained a mystery. However, two recent studies have revealed that an apicomplexan-specific DNA-binding protein is essential for the initiation of this cell fate decision, ultimately providing the malaria community with a novel and important tool in the battle to prevent malaria transmission.

View Article and Find Full Text PDF

Giardia intestinalis is a common cause of diarrheal disease and it consists of eight genetically distinct genotypes or assemblages (A-H). Only assemblages A and B infect humans and are suggested to represent two different Giardia species. Correlations exist between assemblage type and host-specificity and to some extent symptoms.

View Article and Find Full Text PDF

Background: The protozoan parasite Giardia intestinalis and the pathogenic bacterium Helicobacter pylori are well known for their high prevalences in human hosts worldwide. The prevalence of both organisms is known to peak in densely populated, low resource settings and children are infected early in life. Different Giardia genotypes/assemblages have been associated with different symptoms and H.

View Article and Find Full Text PDF

Background: Genetic heterogeneity has become a major inconvenience in the genotyping and molecular epidemiology of the intestinal protozoan parasite Giardia intestinalis, in particular for the major human infecting genotype, assemblage B. Sequence-based genotyping of assemblage B Giardia from patient fecal samples, where one or several of the commonly used genotyping loci (beta-giardin, triosephosphate isomerase and glutamate dehydrogenase) are implemented, is often hampered due to the presence of sequence heterogeneity in the sequencing chromatograms. This can be due to allelic sequence heterozygosity (ASH) and /or co-infections with parasites of different assemblage B sub-genotypes.

View Article and Find Full Text PDF

We have recently sequenced the genome of the human Giardia intestinalis assemblage B isolate GS.1 comparisons to the earlier sequenced genome of the human assemblage A isolate WB showed that the average amino acid identity in 4,300 orthologous proteins was only 78%. Here we discuss these results in the light of new genome sequencing data from the hoofed-animal assemblage E (isolate P15, isolated from a pig) and further characterization of assemblage A and B isolates from humans.

View Article and Find Full Text PDF

In this study we describe a novel protocol for rapid molecular analysis of patient samples using a combination of real-time polymerase chain reaction (PCR) and Sanger sequencing. This would normally take 2 working days in the diagnostic laboratory, but using this protocol the process can be completed within 3 h using equipment normally found in the laboratory. The innovative steps in this protocol are the sequencing of the product generated in the diagnostic real-time PCR, addition of a sequencing tail to the PCR primer, which increases the quality of the sequence without loss of sensitivity or specificity, and optimization of the hands-on and instrument steps using modern reagents.

View Article and Find Full Text PDF

Background: Giardia intestinalis is a protozoan parasite that causes diarrhea in a wide range of mammalian species. To further understand the genetic diversity between the Giardia intestinalis species, we have performed genome sequencing and analysis of a wild-type Giardia intestinalis sample from the assemblage E group, isolated from a pig.

Results: We identified 5012 protein coding genes, the majority of which are conserved compared to the previously sequenced genomes of the WB and GS strains in terms of microsynteny and sequence identity.

View Article and Find Full Text PDF