Quantum networks play a major role in long-distance communication, quantum cryptography, clock synchronization, and distributed quantum computing. Generally, these protocols involve many independent sources sharing entanglement among distant parties that, upon measuring their systems, generate correlations across the network. The question of which correlations a given quantum network can give rise to remains almost uncharted.
View Article and Find Full Text PDFBecause of conservation of energy we cannot directly turn a quantum system with a definite energy into a superposition of different energies. However, if we have access to an additional resource in terms of a system with a high degree of coherence, as for standard models of laser light, we can overcome this limitation. The question is to what extent coherence gets degraded when utilized.
View Article and Find Full Text PDFThe work content of non-equilibrium systems in relation to a heat bath is often analysed in terms of expectation values of an underlying random work variable. However, when optimizing the expectation value of the extracted work, the resulting extraction process is subject to intrinsic fluctuations, uniquely determined by the Hamiltonian and the initial distribution of the system. These fluctuations can be of the same order as the expected work content per se, in which case the extracted energy is unpredictable, thus intuitively more heat-like than work-like.
View Article and Find Full Text PDFThe heat generated by computations is not only an obstacle to circuit miniaturization but also a fundamental aspect of the relationship between information theory and thermodynamics. In principle, reversible operations may be performed at no energy cost; given that irreversible computations can always be decomposed into reversible operations followed by the erasure of data, the problem of calculating their energy cost is reduced to the study of erasure. Landauer's principle states that the erasure of data stored in a system has an inherent work cost and therefore dissipates heat.
View Article and Find Full Text PDFBy utilizing single particle interferometry, the fidelity or coherence of a pair of quantum states is identified with their capacity for interference. We consider processes acting on the internal degree of freedom (e.g.
View Article and Find Full Text PDF