Porphyrin-2,3-diones and porphyrin-2,3,7,8- and porphyrin-2,3,12,13-tetraones were shown to have a redox-active unit that can function independently of the macrocycle at large. Electroreduction of 5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)porphyrin-2,3-diones [(P-dione)M] and the corresponding -2,3,12,13-tetraones [L-(P-tetraone)M] and -2,3,7,8-tetraones [C-(P-tetraone)M], where M = 2H, CuII, ZnII, NiII, and PdII was investigated and the products were characterized by ESR and thin-layer UV-visible spectroelectrochemistry. Electrochemical and spectroelectrochemical data show that the first two reductions of the porphyrin-diones and the first three reductions of the porphyrin-tetraones occur at the dione units.
View Article and Find Full Text PDF