Background: Liver failure in experimental animals or in human cirrhosis elicits neuroinflammation. Prolyl oligopeptidase (PREP) has been implicated in neuroinflammatory events in neurodegenerative diseases: PREP protein levels are increased in brain glial cells upon neuroinflammatory insults, but the circulating PREP activity levels are decreased in multiple sclerosis patients in a process probably mediated by bioactive peptides. In this work, we studied the variation of PREP levels upon liver failure and correlated it with several inflammatory markers to conclude on the relation of PREP with systemic and/or neuroinflammation.
View Article and Find Full Text PDFProlyl oligopeptidase (PREP) has been considered as a drug target for the treatment of neurodegenerative diseases. In plasma, PREP has been found altered in several disorders of the central nervous system including multiple sclerosis (MS). Oxidative stress and the levels of an endogenous plasma PREP inhibitor have been proposed to decrease PREP activity in MS.
View Article and Find Full Text PDFProlyl oligopeptidase (PREP) cleaves short peptides at the C-side of proline. Although several proline containing neuropeptides have been shown to be efficiently cleaved by PREP in vitro, the actual physiological substrates of this peptidase are still a matter of controversy. The aim of this study was to evaluate the changes in the peptidome of rat tissues caused by a repeated 4-day administration of the potent and specific PREP inhibitor KYP-2047, using our recently developed iTRAQ-based technique.
View Article and Find Full Text PDFProlyl endopeptidase (PREP), probably acting through the inositol cycle, has been implicated in memory and learning. However, the physiological role of PREP is unknown. It has been shown that PREP expression, regulated in cerebellar granule cells, has probably a role in cell proliferation and differentiation.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
May 2011
Inhibitors of prolyl oligopeptidase have been reported to be neuroprotective, especially in memory loss caused by lesion or disease. This enzyme has also been implicated in neurodegeneration. Although it was initially thought that prolyl oligopeptidase functioned to directly control of neuropeptide levels, emerging evidence points out in part that this peptidase modulates peptides which in turn regulate inflammatory responses.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
May 2011
Prolyl oligopeptidase (POP) is a serine protease that cleaves peptides shorter than 30-mer at the carboxyl side of an internal proline. POP has been proposed to be involved in some pathologies including mood disorders and neurodegenerative diseases. However, the physiological role of POP remains unknown.
View Article and Find Full Text PDFBackground: Multiple sclerosis (MS) is a complex, inflammatory and neurodegenerative disease of the central nervous system leading to long-term disability. Recent studies indicate a close association between inflammation and neurodegeneration in all lesions and disease stages of MS. Prolyl oligopeptidase (POP) is a proline-specific serine protease that cleaves several neuroactive peptides.
View Article and Find Full Text PDFProlyl oligopeptidase (POP) is a serine endopeptidase that hydrolyses proline-containing peptides shorter than 30 amino acids. POP may be associated with cognitive functions, possibly via the cleavage of neuropeptides. Recent studies have also suggested novel non-hydrolytic and non-catalytic functions for POP.
View Article and Find Full Text PDFIn vitro, prolyl oligopeptidase (POP) cleaves proline-containing bioactive peptides such as substance P, gonadotropin-releasing hormone, thyrotropin-releasing hormone, arginine-vasopressin, and neurotensin. Based on specific in vivo inhibition, POP has been suggested to be involved in cognitive and psychiatric processes but the identity of its physiological substrates has remained inconclusive. We have combined (a) sample snap-freezing and boiling buffer extraction, to limit protein degradation and reduce sample complexity; (b) pH two-dimensional liquid reverse-phase chromatography to enhance resolution; and (c) iTRAQ isobaric labeling to identify the rat brain peptides whose levels were differentially changed due to in vivo POP inhibition.
View Article and Find Full Text PDFCatechol-O-methyl transferase (COMT) methylates catechols, such as L-dopa and dopamine, and COMT deficient mice show dramatic shifts in the metabolite levels of catechols. Increase in catechol metabolite levels can, in principle, lead to oxidative stress but no indices of oxidative stress have been reported in COMT-knockout (KO) mice [Forsberg MM, Juvonen RO, Helisalmi P, Leppanen J, Gogos JA, Karayiorgou M, et al. Lack of increased oxidative stress in catechol-O-methyltransferase (COMT)-deficient mice.
View Article and Find Full Text PDFProlyl oligopeptidase (POP) is a serine protease that cleaves small peptides at the carboxyl side of an internal proline residue. Substance P, arginine-vasopressin, thyroliberin and gonadoliberin are proposed physiological substrates of this protease. POP has been implicated in a variety of brain processes, including learning, memory, and mood regulation, as well as in pathologies such as neurodegeneration, hypertension, and psychiatric disorders.
View Article and Find Full Text PDF