Neutrophils are increasingly implicated in chronic inflammation and metabolic disorders. Here, we show that visceral adipose tissue (VAT) from individuals with obesity contains more neutrophils than in those without obesity and is associated with a distinct bacterial community. Exploring the mechanism, we gavaged microbiome-depleted mice with stool from patients with and without obesity during high-fat or normal diet administration.
View Article and Find Full Text PDFDecreased adipose tissue regulatory T cells contribute to insulin resistance in obese mice, however, little is known about the mechanisms regulating adipose tissue regulatory T cells numbers in humans. Here we obtain adipose tissue from obese and lean volunteers. Regulatory T cell abundance is lower in obese vs.
View Article and Find Full Text PDFBackground: Obesity is characterized by visceral adipose tissue (AT) inflammation. Immunosuppressive regulatory T cells (Tregs), phagocytic M2-like macrophages, and innate lymphoid cells type 2 (ILC2) control lean AT inflammation to maintain systemic insulin sensitivity, while the loss of these cells in obesity leads to AT inflammation and insulin resistance (IR).
Objective: The objective of this study was to determine if weight loss following obesity would correct AT inflammation and systemic metabolism.
Background: Adipose tissue (AT) inflammation is linked to the development of type 2 diabetes (T2DM) and atherosclerosis in murine models of obesity. Reduced AT regulatory T cells (Tregs), which are anti-inflammatory immune cells, play an important part in this pathogenesis, and we have shown that AT-Tregs are inversely correlated to increasing body-mass-index. The purpose of this study was to evaluate the association between AT-Treg abundance and comorbidity status in patients undergoing bariatric surgery (BS).
View Article and Find Full Text PDFMacrophages, B cells, and adipocytes are among the adipose tissue (AT) APCs that differentiate and activate naive CD4 T cells. Mice with adipocyte loss of MHC class II (MHC II) are more insulin sensitive. Because macrophages are professional APCs, mice with genetic myeloid MHC II depletion (myeloid MHC II knockout [mMHCII]) were created and metabolically characterized.
View Article and Find Full Text PDFObesity is associated with a state of chronic low-grade inflammation both systemically and within specific tissues, including adipose tissue (AT). In murine models of obesity, there is a shift in the inflammatory profile of the AT immune cells, with an accumulation of proinflammatory M1 macrophages that surround the expanding adipocyte. However, much less is known about the immune cell composition and how to best define AT macrophages in humans.
View Article and Find Full Text PDFObjective: Components of the adipose tissue (AT) extracellular matrix (ECM) are recently discovered contributors to obesity-related cardiometabolic disease. We identified increased adipocyte expression of ECM-related clusterin (apolipoprotein J) in obese versus lean women by microarray. Our objective was to determine ) whether subcutaneous AT adipocyte (SAd) clusterin and serum clusterin are associated with insulin resistance (IR) and known markers of cardiometabolic risk and ) how clusterin may contribute to increased risk.
View Article and Find Full Text PDFDeiodinase type II (D2), encoded by , catalyzes the conversion of T4 to bioactive T3. T3 not only stimulates adaptive thermogenesis but also affects adipose tissue (AT) lipid accumulation, mitochondrial function, inflammation, and potentially systemic metabolism. Although better defined in brown AT, the precise role of expression in white AT remains largely unknown, with data derived only from whole fat.
View Article and Find Full Text PDFStud Health Technol Inform
December 2016
The emerging penetration of Health IT in Latin America (especially in Brazil) has exacerbated the ever-increasing amount of Electronic Health Record (EHR) clinical free text documents.This imposes a workflow efficiency challenge on clinicians who need to synthesize such documents during the typically time-constrained patient care. We propose an ontology-driven semantic search framework that effectively supports clinicians' information synthesis at the point of care.
View Article and Find Full Text PDFNonalcoholic fatty liver disease, particularly its more aggressive form, nonalcoholic steatohepatitis (NASH), is associated with hepatic insulin resistance. Osteocalcin, a protein secreted by osteoblast cells in bone, has recently emerged as an important metabolic regulator with insulin-sensitizing properties. In humans, osteocalcin levels are inversely associated with liver disease.
View Article and Find Full Text PDFAdipose-resident T cells (ARTs) regulate metabolic and inflammatory responses in obesity, but ART activation signals are poorly understood. Here, we describe class II major histocompatibility complex (MHCII) as an important component of high-fat-diet (HFD)-induced obesity. Microarray analysis of primary adipocytes revealed that multiple genes involved in MHCII antigen processing and presentation increased in obese women.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
December 2012
Objective: To determine the impact of hematopoietic deletion of nuclear factor- (erythroid-derived 2) like 2 factor (Nrf2) on the development of atherosclerosis and liver injury in an obese, hypercholesterolemic mouse model.
Methods And Results: Two-month-old male low-density lipoprotein receptor-deficient mice were lethally irradiated and transplanted with either wild type or Nrf2-deficient (Nrf2(-/-)) bone marrow cells. At 3 months of age, mice were placed on an obesogenic high-fat diet (HFD), high-cholesterol diet for 7 months.
Unlabelled: Nonalcoholic fatty liver disease (NAFLD) is a common complication of obesity that can progress to nonalcoholic steatohepatitis (NASH), a serious liver pathology that can advance to cirrhosis. The mechanisms responsible for NAFLD progression to NASH remain unclear. Lack of a suitable animal model that faithfully recapitulates the pathophysiology of human NASH is a major obstacle in delineating mechanisms responsible for progression of NAFLD to NASH and, thus, development of better treatment strategies.
View Article and Find Full Text PDFThe profibrotic adhesion molecule, osteopontin (OPN), is upregulated in kidneys of humans and mice with diabetes. The thiazolidinedione (TZD) insulin sensitizers decrease albuminuria in diabetic nephropathy (DN) and reduce OPN expression in vascular and cardiac tissue. To examine whether OPN is a critical mediator of DN we treated db/db mice with insulin, rosiglitazone, or pioglitazone to achieve similar fasting plasma glucose levels.
View Article and Find Full Text PDFExcess food intake leads to obesity and diabetes, both of which are well-known independent risk factors for atherosclerosis, and both of which are growing epidemics in an aging population. We hypothesized that aging enhances the metabolic and vascular effects of high fat diet (HFD) and therefore examined the effect of age on atherosclerosis and insulin resistance in lipoprotein receptor knockout (LDLR(-/-)) mice. We found that 12-month-old (middle-aged) LDLR(-/-) mice developed substantially worse metabolic syndrome, diabetes, and atherosclerosis than 3-month-old (young) LDLR(-/-) mice when both were fed HFD for 3 months, despite similar elevations in total cholesterol levels.
View Article and Find Full Text PDFPPARgamma ligands have been shown to have antiproliferative effects on many cell types. We herein report that a synthetic dominant-negative (DN) PPARgamma mutant functions like a growth factor to promote cell cycle progression and cell proliferation in human coronary artery smooth muscle cells (CASMCs). In quiescent CASMCs, adenovirus-expressed DN-PPARgamma promoted G1-->S cell cycle progression, enhanced BrdU incorporation, and increased cell proliferation.
View Article and Find Full Text PDFObjective: Cardiac fibrosis is an important component of diabetic cardiomyopathy. Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands repress proinflammatory gene expression, including that of osteopontin, a known contributor to the development of myocardial fibrosis. We thus investigated the hypothesis that PPARgamma ligands could attenuate cardiac fibrosis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2008
Activation of the nuclear hormone receptor peroxisome proliferator-activated receptor delta (PPARdelta) has been shown to improve insulin resistance, adiposity, and plasma HDL levels. However, its antiatherogenic role remains controversial. Here we report atheroprotective effects of PPARdelta activation in a model of angiotensin II (AngII)-accelerated atherosclerosis, characterized by increased vascular inflammation related to repression of an antiinflammatory corepressor, B cell lymphoma-6 (Bcl-6), and the regulators of G protein-coupled signaling (RGS) proteins RGS4 and RGS5.
View Article and Find Full Text PDFRosiglitazone is an insulin-sensitizing agent that has recently been shown to exert beneficial effects on atherosclerosis. In addition to peroxisome proliferator-activated receptor (PPAR)-gamma, rosiglitazone can affect other targets, such as directly inhibiting recombinant long-chain acyl-CoA synthetase (ACSL)-4 activity. Because it is unknown if ACSL4 is expressed in vascular cells involved in atherosclerosis, we investigated the ability of rosiglitazone to inhibit ACSL activity and fatty acid partitioning in human and murine arterial smooth muscle cells (SMCs) and macrophages.
View Article and Find Full Text PDFCancer cell invasion and metastasis require the concerted action of several proteases that degrade extracellular matrix proteins and basement membranes. Recent reports suggest the plasminogen activator system plays a critical role in pancreatic cancer biology. In the present study, we determined the contribution of the plasminogen activator system to pancreatic cancer cell invasion in vitro.
View Article and Find Full Text PDFCyclooxygenase 2 (COX-2) inhibitors are promising antiangiogenic agents in several preclinical models. The aim of the present study was to evaluate the effect of selective COX-2 inhibitors on vascular endothelial growth factor (VEGF) production in vitro and angiogenesis and growth of pancreatic cancer in vivo, focusing on putative differences between COX-2-negative and COX-2-positive tumors. VEGF production and angiogenesis in vitro were determined by ELISA and endothelial cell migration assay.
View Article and Find Full Text PDFThe liver X receptors alpha and beta (LXRalpha and LXRbeta) are important regulators of cholesterol homeostasis in liver and macrophages. Synthetic LXR ligands prevent the development of atherosclerosis in murine models; however, the potential functional relevance of LXRs in vascular smooth muscle cells (VSMCs) has not been investigated. In the present study, we demonstrate that LXRs are expressed and functional in primary human coronary artery VSMCs (CASMCs).
View Article and Find Full Text PDFProliferation of vascular smooth muscle cells (VSMC) represents a key event for the pathogenesis of postangioplasty restenosis. Minichromosome maintenance proteins (MCM) form essential components of the prereplicative complex at DNA replication origins and are regulated by E2F. The present studies were designed to investigate the signal transduction pathways controlling the expression of MCM6 and MCM7 in VSMC in response to mitogenic stimuli.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor (PPAR) gamma is activated by thiazolidinediones (TZDs), widely used as insulin-sensitizing agents for the treatment of type 2 diabetes. TZDs have been shown to induce apoptosis in a variety of mammalian cells. In vascular smooth muscle cells (VSMCs), proliferation and apoptosis may be competing processes during the formation of restenotic and atherosclerotic lesions.
View Article and Find Full Text PDF