A distinctive feature of both type 1 and type 2 diabetes is the waning of insulin-secreting beta cells in the pancreas. New methods for direct and specific targeting of the beta cells could provide platforms for delivery of pharmaceutical reagents. Imaging techniques such as Positron Emission Tomography (PET) rely on the efficient and specific delivery of imaging reagents, and could greatly improve our understanding of diabetes etiology as well as providing biomarkers for viable beta-cell mass in tissue, in both pancreas and in islet grafts.
View Article and Find Full Text PDFEnteroviruses, which infect via the gut, have been implicated in type 1 diabetes (T1D) development. Prolonged faecal shedding of enterovirus has been associated with islet autoimmunity. Additionally, enteroviral proteins and viral RNA have been detected in the pancreatic islets of individuals with recent-onset T1D, implicating their possible role in beta cell destruction.
View Article and Find Full Text PDFPluripotent stem cell-derived islets (SC-islets) have emerged as a new source for β-cell replacement therapy. The function of human islet transplants is hampered by excessive cell death posttransplantation; contributing factors include inflammatory reactions, insufficient revascularization, and islet amyloid formation. However, there is a gap in knowledge of the engraftment process of SC-islets.
View Article and Find Full Text PDFBackground: Beta-cell replacement methods such as transplantation of isolated donor islets have been proposed as a curative treatment of type 1 diabetes, but widespread application is challenging due to shortages of donor tissue and the need for continuous immunosuppressive treatments. Stem-cell-derived islets have been suggested as an alternative source of beta cells, but face transplantation protocols optimization difficulties, mainly due to a lack of available methods and markers to directly monitor grafts survival, as well as their localization and function. Molecular imaging techniques and particularly positron emission tomography has been suggested as a tool for monitoring the fate of islets after clinical transplantation.
View Article and Find Full Text PDFNADPH oxidase 4 (NOX4) inhibition has been reported to mitigate diabetes-induced beta-cell dysfunction and improve survival , as well as counteract high-fat diet-induced glucose intolerance in mice. We investigated the antidiabetic effects of the selective NOX4 inhibitor GLX7013159 in athymic diabetic mice transplanted with human islets over a period of 4 weeks. The GLX7013159-treated mice achieved lower blood glucose and water consumption throughout the treatment period.
View Article and Find Full Text PDFBeta-cell dysfunction is a hallmark of disease progression in patients with diabetes. Research has been focused on maintaining and restoring beta-cell function during diabetes development. The aims of this study were to explore the expression of C-type lectin domain containing 11A (CLEC11A), a secreted sulphated glycoprotein, in human islets and to evaluate the effects of CLEC11A on beta-cell function and proliferation in vitro.
View Article and Find Full Text PDFTransplantation of pancreatic islet cells derived from human pluripotent stem cells is a promising treatment for diabetes. Despite progress in the generation of stem-cell-derived islets (SC-islets), no detailed characterization of their functional properties has been conducted. Here, we generated functionally mature SC-islets using an optimized protocol and benchmarked them comprehensively against primary adult islets.
View Article and Find Full Text PDFThe anti-inflammatory role of regulatory B cells (Breg cells) has been associated with IL-35 based on studies of experimental autoimmune uveitis and encephalitis. The role of Breg cells and IL-35 Breg cells for type 1 diabetes (T1D) remains to be investigated. We studied PBMCs from T1D subjects and healthy controls (HC) and found lowered proportions of Breg cells and IL-35 Breg cells in T1D.
View Article and Find Full Text PDFGliomas are brain tumors characterized by an immunosuppressive microenvironment. Immunostimulatory agonistic CD40 antibodies (αCD40) are in clinical development for solid tumors, but are yet to be evaluated for glioma. Here, we demonstrate that systemic delivery of αCD40 in preclinical glioma models induces the formation of tertiary lymphoid structures (TLS) in proximity of meningeal tissue.
View Article and Find Full Text PDFAvailability of numerous high-quality iPSC lines is needed to overcome donor-associated variability caused by genetic background effects. We generated two human iPSC lines from dermal fibroblasts of two healthy females using Sendai virus reprogramming. Quality assessment of the iPSC lines confirmed the expression of pluripotency markers, trilineage differentiation capacity and absence of exogenous expression of reprogramming factors.
View Article and Find Full Text PDFMurine boundary cap-derived neural crest stem cells (NCSCs) are capable of enhancing islet function by stimulating beta cell proliferation as well as increasing the neural and vascular density in the islets both and . This study aimed to isolate NCSC-like cells from human bone marrow. CD271 magnetic cell separation and culture techniques were used to purify a NCSC-enriched population of human bone marrow.
View Article and Find Full Text PDFThe lipotoxicity is considered as one of the risk for diabetes. Here we report C-type lectin domain family 11, member A (Clec11a) as a new regulator in islet playing a protective role in lipotoxicity induced dysfunction. Islet transcriptome sequencing was performed using the high-fat diet induced obesity (DIO) mice model.
View Article and Find Full Text PDFLow-oxygenated and dormant islets with a capacity to become activated when needed may play a crucial role in the complex machinery behind glucose homeostasis. We hypothesized that low-oxygenated islets, when not functionally challenged, do not rapidly cycle between activation and inactivation but are a stable population that remain low-oxygenated. As this was confirmed, we aimed to characterize these islets with regard to cell composition, vascular density, and endocrine cell proliferation.
View Article and Find Full Text PDFBeta cell replacement is an exciting field where new beta cell sources and alternative sites are widely explored. The liver has been the implantation site of choice in the clinic since the advent of islet transplantation. However, in most cases, repeated islet transplantation is needed to achieve normoglycemia in diabetic recipients.
View Article and Find Full Text PDFWe assessed glucose uptake in different tissues in type 2 diabetes (T2D), prediabetes, and control subjects to elucidate its impact in the development of whole-body insulin resistance and T2D. Thirteen T2D, 12 prediabetes, and 10 control subjects, matched for age and BMI, underwent OGTT and abdominal subcutaneous adipose tissue (SAT) biopsies. Integrated whole-body F-FDG PET and MRI were performed during a hyperinsulinemic euglycemic clamp to asses glucose uptake rate (MRglu) in several tissues.
View Article and Find Full Text PDFIntroduction: The sodium-glucose cotransporter 2 inhibitor dapagliflozin and the glucagon-like peptide-1 (GLP-1) receptor agonist exenatide reduce bodyweight via differing and complementary mechanisms. This post hoc analysis investigated the metabolic effects and baseline associations with bodyweight loss on coadministration of dapagliflozin and exenatide once weekly (QW) among adults with obesity and without diabetes.
Methods: In the primary trial, adults with obesity and without diabetes [n = 50; 18-70 years; body mass index (BMI) 30-45 kg/m] were randomized to double-blind oral dapagliflozin 10 mg (DAPA) once daily plus subcutaneous long-acting exenatide 2 mg QW (ExQW) or placebo over 24 weeks, followed by an open-label extension from 24-52 weeks during which all participants received active treatment.
Multiple endocrine neoplasia type 1 (MEN1) is an endocrine tumor syndrome caused by heterozygous mutations in the MEN1 tumor suppressor gene. The MEN1 pancreas of the adolescent gene carrier frequently contain diffusely spread pre-neoplasias and microadenomas, progressing to macroscopic and potentially malignant pancreatic neuroendocrine tumors (P-NET), which represents the major death cause in MEN1. The unveiling of the molecular mechanism of P-NET which is not currently understood fully to allow the optimization of diagnostics and treatment.
View Article and Find Full Text PDFInsulin-producing cells derived from human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) have for long been a promising, but elusive treatment far from clinical translation into type 1 diabetes therapy. However, the field is now on the verge of moving such insulin-producing cells into clinical trials. Although stem cell therapies provide great opportunities, there are also potential risks such as teratoma formation associated with the treatment.
View Article and Find Full Text PDFItch is a sensation that promotes the desire to scratch, which can be evoked by mechanical and chemical stimuli. In the spinal cord, neurons expressing the gastrin-releasing peptide receptor (GRPR) have been identified as specific mediators of itch. However, our understanding of the GRPR population in the spinal cord, and thus how these neurons exercise their functions, is limited.
View Article and Find Full Text PDFSmall and big mouse islets were compared with special reference to their content of glucagon-producing α-cells and somatostatin-producing δ-cells. Areas stained for glucagon and somatostatin were measured in the largest cross section of small (diameter < 60 μm) and big (diameter > 100 μm) islets. Comparison of the areas indicated proportionally more δ- than α-cells in the small islets.
View Article and Find Full Text PDFER stress results in activation of the unfolded protein response and has been implicated in the development of fibrotic diseases. In this study, we show that inhibition of the ER stress-induced IRE1α signaling pathway, using the inhibitor 4μ8C, blocks TGFβ-induced activation of myofibroblasts in vitro, reduces liver and skin fibrosis in vivo, and reverts the fibrotic phenotype of activated myofibroblasts isolated from patients with systemic sclerosis. By using IRE1α(-/-) fibroblasts and expression of IRE1α-mutant proteins lacking endoribonuclease activity, we confirmed that IRE1α plays an important role during myofibroblast activation.
View Article and Find Full Text PDFPancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes.
View Article and Find Full Text PDFSporadic breast cancer (SBC) is a common disease without robust means of early risk prediction in the population. We studied 282 females with SBC, focusing on copy number aberrations in cancer-free breast tissue (uninvolved margin, UM) outside the primary tumor (PT). In total, 1162 UMs (1-14 per breast) were studied.
View Article and Find Full Text PDFBackground: Muscle is a promising alternative site for islet transplantation that facilitates rapid restoration of islet vascularization. However, the development of fibrosis suggests massive cellular death after transplantation. This study tested the hypothesis that islet graft function is limited by hypoxia-related death early after intramuscular transplantation, but that this can be overcome by cotransplantation of an oxygen carrier, that is, polymerized bovine hemoglobin (PolyHb).
View Article and Find Full Text PDF