Publications by authors named "Joey Latham"

Parkinson's disease is the second most common neurodegenerative disorder, affecting nearly 10 million people worldwide. Ferroptosis, a recently identified form of regulated cell death characterized by 15-lipoxygenase-mediated hydroperoxidation of membrane lipids, has been implicated in neurodegenerative disorders including amyotrophic lateral sclerosis and Parkinson's disease. Pharmacological inhibition of 15 -lipoxygenase to prevent iron- and lipid peroxidation-associated ferroptotic cell death is a rational strategy for the treatment of Parkinson's disease.

View Article and Find Full Text PDF
Article Synopsis
  • * The study evaluated various dosing regimens (single and multiple ascending doses) and found that the maximum plasma concentration occurred approximately 4 hours after administration, with a terminal half-life between 20 to 25.3 hours for single doses.
  • * Results indicated no major safety concerns at doses up to 1000 mg single dose and favored a 250-mg twice-daily regimen taken with food for further development in ALS patients.
View Article and Find Full Text PDF

Background: Mitochondrial disease is a family of genetic disorders characterized by defects in the generation and regulation of energy. Epilepsy is a common symptom of mitochondrial disease, and in the vast majority of cases, refractory to commonly used antiepileptic drugs. Ferroptosis is a recently-described form of iron- and lipid-dependent regulated cell death associated with glutathione depletion and production of lipid peroxides by lipoxygenase enzymes.

View Article and Find Full Text PDF

Ferroptosis is a form of programmed cell death associated with inflammation, neurodegeneration, and ischemia. Vitamin E (alpha-tocopherol) has been reported to prevent ferroptosis, but the mechanism by which this occurs is controversial. To elucidate the biochemical mechanism of vitamin E activity, we systematically investigated the effects of its major vitamers and metabolites on lipid oxidation and ferroptosis in a striatal cell model.

View Article and Find Full Text PDF

Analysis and quantification of analytes in biological systems is a critical component of metabolomic investigations of cell function. The most widely used methods employ chromatographic separation followed by mass spectrometric analysis, which requires significant time for sample preparation and sequential chromatography. We introduce a novel high-throughput, separation-free methodology based on MALDI mass spectrometry that allows for the parallel analysis of targeted metabolomes.

View Article and Find Full Text PDF

We report the quantitative, label-free analysis of protein-protein interactions in free solution within picoliter volumes using backscatter interferometry (BSI). Changes in the refractive index are measured for solutions introduced on a PDMS microchip allowing determination of forward and reverse rate constants for two-mode binding. Time-dependent BSI traces are directly fit using a global analysis approach to characterize the interaction of the small heat-shock protein alpha-Crystallin with two substrates: destabilized mutants of T4 lysozyme and the in vivo target betaB1-Crystallin.

View Article and Find Full Text PDF

Imaging mass spectrometry is becoming a key technology for the investigation of the molecular content of biological tissue sections in direct correlation with the underlying histology. Much of our work has been done with fresh-frozen tissue sections that has undergone minimal protein degradation between the time a tissue biopsy is sampled and the time it is snap-frozen so that no preserving or fixing agents need to be added to the frozen biopsy. However, in many sampling environments, immediate flash freezing may not be possible and so we have explored the use of ethanol-preserved, paraffin-embedded tissue specimens for proteomic analyses.

View Article and Find Full Text PDF

Mass spectrometry-based tissue profiling and imaging are technologies that allow identification and visualization of protein signals directly on thin sections cut from fresh frozen tissue specimens. These technologies were utilized to evaluate protein expression profiles in the normal mouse prostate during development (1-5 weeks of age), at sexual maturation (6 weeks of age), and in adult prostate (at 10, 15, or 40 weeks of age). The evolution of protein expression during normal prostate development and maturation were subsequently compared with 15-week prostate tumors derived from genetically engineered mice carrying the Large T antigen gene under regulation of the prostate-specific probasin promoter (LPB-Tag mouse model for prostate cancer).

View Article and Find Full Text PDF

Free-solution, label-free molecular interactions were investigated with back-scattering interferometry in a simple optical train composed of a helium-neon laser, a microfluidic channel, and a position sensor. Molecular binding interactions between proteins, ions and protein, and small molecules and protein, were determined with high dynamic range dissociation constants (Kd spanning six decades) and unmatched sensitivity (picomolar Kd's and detection limits of 10,000s of molecules). With this technique, equilibrium dissociation constants were quantified for protein A and immunoglobulin G, interleukin-2 with its monoclonal antibody, and calmodulin with calcium ion Ca2+, a small molecule inhibitor, the protein calcineurin, and the M13 peptide.

View Article and Find Full Text PDF