Publications by authors named "Joey Allen"

Landscape heterogeneity is known as a major factor of community structure and composition. Whether this effect of the landscape extends at different scales and particularly at the relevant scale for microorganisms remained to be determined. We used the cases produced by aquatic larvae of Trichoptera, which assemble organic or mineral particles, as naturally replicated experimental systems representing structured substrates to determine the effect of landscape structuration on microbial communities.

View Article and Find Full Text PDF

In aquatic ecosystems, excessive nutrient loading is a global problem that can induce regime shifts from macrophyte- to phytoplankton-dominated states with severe consequences for ecosystem functions. Most agricultural landscapes are sites of nutrient and pesticide loading, which can interact with other stressors (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • * A microcosm experiment was conducted to test how these stressors impact various organisms, including submerged plants and primary consumers, revealing significant negative effects on macrophytes and changes in community dynamics towards phytoplankton dominance.
  • * The study highlights the complex interactions between stressors and encourages further research on their combined effects at the community and ecosystem levels to better understand and manage shallow lake ecosystems.
View Article and Find Full Text PDF

Aquatic ecosystems are exposed to multiple stressors such as agricultural run-off (ARO) and climate-change related increase of temperature. We aimed to determine how ARO and the frequency of its input can affect shallow lake ecosystems through direct and indirect effects on primary producers and primary consumers, and whether warming can mitigate or reinforce the impact of ARO. We performed a set of microcosm experiments simulating ARO using a cocktail of three organic pesticides (terbuthylazine, tebuconazole, pirimicarb), copper and nitrate.

View Article and Find Full Text PDF

Freshwater biofilms play an essential ecological role, but they also adversely affect human activities through undesirable biofouling of artificial submerged structures. They form complex aggregates of microorganisms that colonize any type of substratum. In phototrophic biofilms, diatoms dominate in biomass and produce copious amount of extracellular polymeric substances (EPSs), making them efficient early colonizers.

View Article and Find Full Text PDF

Aim: To determine the association of Diopsys® NOVA-LX amplitude and latency abnormality scores with perimetric staging of chronic glaucoma, and to explore potential single-visit short-duration transient visual evoked potential (SD-tVEP) trend detection ability utilizing Humphrey 30-2 field progression data.

Materials And Methods: Glaucoma subspecialty clinic. Treated adult chronic glaucoma patients undergoing SD-tVEP evaluation.

View Article and Find Full Text PDF

Many organisms produce chemical compounds, generally referred as secondary metabolites, to defend against predators and competitors (allelopathic compounds). Several hypotheses have been proposed to explain the interaction between environmental factors and secondary metabolites production. However, microalgae commonly use simple metabolites having a role in primary metabolism as allelopathic compounds.

View Article and Find Full Text PDF

As a way to prevent resource depletion by other species, many phototrophic aquatic microorganisms produce inhibitory compounds. This process, known as allelopathy, has been widely studied in planktonic environments, where it is recognized as being a driving force of planktonic communities. However, in benthic environments, biofilms provide very particular micro-environments.

View Article and Find Full Text PDF

The role of chemical interactions in shaping microbial communities has raised increasing interest over the last decade. Many benthic microorganisms are known to develop chemical strategies to overcome competitors, but the real importance of chemical interactions within freshwater biofilm remains unknown. This study focused on the biological and chemical mechanisms of an interaction involving two benthic microorganisms, an allelopathic filamentous green alga, Uronema confervicolum, and a common diatom, Fistulifera saprophila.

View Article and Find Full Text PDF