Hypothesis: We test whether the wettability of nanoparticles (NPs) straddling at an air/water surface or oil/water interface can be extrapolated from sessile drop-derived macroscopic contact angles (mCAs) on planar substrates, assuming that both the nanoparticles and the macroscopic substrates are chemically equivalent and feature the same electrokinetic potential.
Experiments: Pure silica (SiO) and amino-terminated silica (APTES-SiO) NPs are compared to macroscopic surfaces with extremely low roughness (root mean square [RMS] roughness ≤ 2 nm) or a roughness determined by a close-packed layer of NPs (RMS roughness ∼ 35 nm). Equivalence of the surface chemistry is assessed by comparing the electrokinetic potentials of the NPs via electrophoretic light scattering and of the macroscopic substrates via streaming current analysis.
Fundamental insights into the interplay and self-assembly of nanoparticles and surface-active agents at the liquid-liquid interface play a pivotal role in understanding the ubiquitous colloidal systems present in our natural surroundings, including foods and aquatic life, and in the industry for emulsion stabilization, drug delivery, or enhanced oil recovery. Moreover, well-controlled model systems for mixed interfacial adsorption of nanoparticles and surfactants allow unprecedented insights into nonideal or contaminated particle-stabilized emulsions. Here, we investigate such a model system composed of hydrophilic, negatively, and positively charged silica nanoparticles and the oil-soluble cationic lipid octadecyl amine with in situ synchrotron-based X-ray reflectometry, which is analyzed and discussed jointly with dynamic interfacial tensiometry.
View Article and Find Full Text PDFConjugated polymer nanoparticles exhibit very interesting properties for use as bio-imaging agents. In this paper, we report the synthesis of PCDTBT (poly([9-(1'-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophene-diyl)) nanoparticles of varying sizes using the mini-emulsion and emulsion/solvent evaporation approach. The effect of the size of the particles on the optical properties is investigated using UV-Vis absorption and fluorescence emission spectroscopy.
View Article and Find Full Text PDFIn this study, we show that hydrophilic nanoparticles can readily desorb from liquid-liquid interfaces in the presence of surfactants that do not change the wettability of the particles. Our observations are based on a simple theoretical approach to assess the number of adsorbed particles at the surfactant-laden liquid-liquid interface. We test this approach by studying the interfacial self-assembly of equally charged particles and lipids dissolved in separate immiscible phases.
View Article and Find Full Text PDFConjugated polymers are versatile bio-imaging probes as their optical properties can be readily fine-tuned. In this manuscript, fluorescent conjugated polymer nanoparticles are fabricated using three different poly(p-phenylene ethynylene) (PPE) derivatives. The polymers have the same backbone but carry different side chains, i.
View Article and Find Full Text PDF