Publications by authors named "Joerg Stelling"

Genotype networks are sets of genotypes connected by small mutational changes that share the same phenotype. They facilitate evolutionary innovation by enabling the exploration of different neighborhoods in genotype space. Genotype networks, first suggested by theoretical models, have been empirically confirmed for proteins and RNAs.

View Article and Find Full Text PDF

Systems biology has experienced dramatic growth in the number, size, and complexity of computational models. To reproduce simulation results and reuse models, researchers must exchange unambiguous model descriptions. We review the latest edition of the Systems Biology Markup Language (SBML), a format designed for this purpose.

View Article and Find Full Text PDF

Gene expression control based on CRISPRi (clustered regularly interspaced short palindromic repeats interference) has emerged as a powerful tool for creating synthetic gene circuits, both in prokaryotes and in eukaryotes; yet, its lack of cooperativity has been pointed out as a potential obstacle for dynamic or multistable synthetic circuit construction. Here we use CRISPRi to build a synthetic oscillator ("CRISPRlator"), bistable network (toggle switch) and stripe pattern-forming incoherent feed-forward loop (IFFL). Our circuit designs, conceived to feature high predictability and orthogonality, as well as low metabolic burden and context-dependency, allow us to achieve robust circuit behaviors in Escherichia coli populations.

View Article and Find Full Text PDF

Motivation: Multi-steady state behaviour, and in particular multi-stability, provides biological systems with the capacity to take reliable decisions (such as cell fate determination). A problem arising frequently in systems biology is to elucidate whether a signal transduction mechanism or a gene regulatory network has the capacity for multi-steady state behaviour, and consequently for a switch-like response to stimuli. Bifurcation diagrams are a powerful instrument in non-linear analysis to study the qualitative and quantitative behaviour of equilibria including bifurcation into different equilibrium branches and bistability.

View Article and Find Full Text PDF

Single-cell time-lapse data provide the means for disentangling sources of cell-to-cell and intra-cellular variability, a key step for understanding heterogeneity in cell populations. However, single-cell analysis with dynamic models is a challenging open problem: current inference methods address only single-gene expression or neglect parameter correlations. We report on a simple, flexible, and scalable method for estimating cell-specific and population-average parameters of non-linear mixed-effects models of cellular networks, demonstrating its accuracy with a published model and dataset.

View Article and Find Full Text PDF

Targeted therapies have shown significant patient benefit in about 5-10% of solid tumors that are addicted to a single oncogene. Here, we explore the idea of ligand addiction as a driver of tumor growth. High ligand levels in tumors have been shown to be associated with impaired patient survival, but targeted therapies have not yet shown great benefit in unselected patient populations.

View Article and Find Full Text PDF

Bistability has important implications in signaling pathways, since it indicates a potential cell decision between alternative outcomes. We present two approaches developed in the framework of the Chemical Reaction Network Theory for easy and efficient search of multiple steady state behavior in signaling networks (both with and without mass conservation), and apply them to search for sources of bistability at different levels of the interferon signaling pathway. Different type I interferon subtypes and/or doses are known to elicit differential bioactivities (ranging from antiviral, antiproliferative to immunomodulatory activities).

View Article and Find Full Text PDF

Understanding cellular function requires accurate, comprehensive representations of metabolism. Genome-scale, constraint-based metabolic models (GSMs) provide such representations, but their usability is often hampered by inconsistencies at various levels, in particular for concurrent models. COMMGEN, our tool for COnsensus Metabolic Model GENeration, automatically identifies inconsistencies between concurrent models and semi-automatically resolves them, thereby contributing to consolidate knowledge of metabolic function.

View Article and Find Full Text PDF

Background: Influenza vaccine immunogenicity is suboptimal in immunocompromised patients. However, there are limited data on the interplay of T- and B- cell responses to vaccination with simultaneous immunosuppression.

Methods: We collected peripheral blood mononuclear cells from transplant recipients before and 1 month after seasonal influenza vaccination.

View Article and Find Full Text PDF

Background: Within cells, stimuli are transduced into cell responses by complex networks of biochemical reactions. In many cell decision processes the underlying networks behave as bistable switches, converting graded stimuli or inputs into all or none cell responses. Observing how systems respond to different perturbations, insight can be gained into the underlying molecular mechanisms by developing mathematical models.

View Article and Find Full Text PDF

The precise control of gene expression is essential in basic biological research as well as in biotechnological applications. Most regulated systems available in yeast enable only the overexpression of the target gene, excluding the possibility of intermediate or weak expression. Moreover, these systems are frequently toxic or depend on growth conditions.

View Article and Find Full Text PDF

Motivation: Identifying cells in an image (cell segmentation) is essential for quantitative single-cell biology via optical microscopy. Although a plethora of segmentation methods exists, accurate segmentation is challenging and usually requires problem-specific tailoring of algorithms. In addition, most current segmentation algorithms rely on a few basic approaches that use the gradient field of the image to detect cell boundaries.

View Article and Find Full Text PDF

Motivation: A common problem in understanding a biochemical system is to infer its correct structure or topology. This topology consists of all relevant state variables-usually molecules and their interactions. Here we present a method called topological augmentation to infer this structure in a statistically rigorous and systematic way from prior knowledge and experimental data.

View Article and Find Full Text PDF

Predictive dynamical models are critical for the analysis of complex biological systems. However, methods to systematically develop and discriminate among systems biology models are still lacking. We describe a computational method that incorporates all hypothetical mechanisms about the architecture of a biological system into a single model and automatically generates a set of simpler models compatible with observational data.

View Article and Find Full Text PDF

MetaNetX.org is a website for accessing, analysing and manipulating genome-scale metabolic networks (GSMs) as well as biochemical pathways. It consistently integrates data from various public resources and makes the data accessible in a standardized format using a common namespace.

View Article and Find Full Text PDF

Background: A biological system's robustness to mutations and its evolution are influenced by the structure of its viable space, the region of its space of biochemical parameters where it can exert its function. In systems with a large number of biochemical parameters, viable regions with potentially complex geometries fill a tiny fraction of the whole parameter space. This hampers explorations of the viable space based on "brute force" or Gaussian sampling.

View Article and Find Full Text PDF

Circadian clocks have long been known to be essential for the maintenance of physiological and behavioral processes in a variety of organisms ranging from plants to humans. Dysfunctions that subvert gene expression of oscillatory circadian-clock components may result in severe pathologies, including tumors and metabolic disorders. While the underlying molecular mechanisms and dynamics of complex gene behavior are not fully understood, synthetic approaches have provided substantial insight into the operation of complex control circuits, including that of oscillatory networks.

View Article and Find Full Text PDF

Network-based definitions of biochemical pathways have emerged in recent years. These pathway definitions insist on the balanced use of a whole network of biochemical reactions. Two such related definitions, elementary modes and extreme pathways, have generated novel hypotheses regarding biochemical network function.

View Article and Find Full Text PDF