Publications by authors named "Joerg Schilling"

In this paper, we demonstrate the infrared photoluminescence emission from Ge(Si) quantum dots coupled with collective Mie modes of silicon nanopillars. We show that the excitation of band edge dipolar modes of a linear nanopillar array results in strong reshaping of the photoluminescence spectra. Among other collective modes, the magnetic dipolar mode with the polarization along the array axis contributes the most to the emission spectrum, exhibiting an experimentally measured -factor of around 500 for an array of 11 pillars.

View Article and Find Full Text PDF

The development of a fast semiconductor laser is required for the realization of next-generation telecommunication applications. Since lasers operating on quantum dot ground state transitions exhibit only limited gain due to the saturation effect, we investigate lasing from excited states and compare its corresponding static and dynamic behavior to the one from the ground state. InAs quantum dots (QDs) grown in dot-in-well (DWELL) structures allowed to obtain light emission from ground and three excited states in a spectral range of 1.

View Article and Find Full Text PDF

Resonant dielectric nanostructures represent a promising platform for light manipulation at the nanoscale. In this paper, we describe an active photonic system based on Ge(Si) quantum dots coupled to silicon nanodisks. We show that Mie resonances govern the enhancement of the photoluminescent signal from embedded quantum dots due to a good spatial overlap of the emitter position with the electric field of Mie modes.

View Article and Find Full Text PDF

Arrays of differently sized disk shaped gold nanoantennas are prepared on glass, which show localized surface plasmon resonance and Rayleigh anomalies in the near infrared and telecom range between 1000 and 1500 nm wavelength. The spectral position of these grating resonances depends critically on the period of the array and the size of the nanoantennas. When PbS quantum dots embedded in PMMA surround the nanoantennas, an up to four fold enhancement of the photoluminescence is observed at the grating resonances due to the constructive diffractive feedback among neighboring antennas.

View Article and Find Full Text PDF