In the present study we investigated the preparation of biofunctionalized surfaces using the direct electrochemical grafting of maleimidophenyl molecules with subsequent covalent immobilization of specific peptide to detect target antibody, thereby extending the application of the biosensing systems towards immunodiagnostics. Para-maleimidophenyl (p-MP) functional groups were electrochemically grafted on gold and silicon surfaces from solutions of the corresponding diazonium salt. A specially synthesized peptide modified with cysteine (Cys-peptide) was then immobilized on the p-MP grafted substrates by cross-linking between the maleimide groups and the sulfhydryl group of the cysteine residues.
View Article and Find Full Text PDFWe have investigated the fundamental amidation reaction by a model system consisting of an electrochemically functionalised Au surface by aminophenyl and 4-nitrobenzoic acid activated by EEDQ. The development of the NO(2) related stretching vibrations with time reveals that the amidation process is very slow at Au surfaces and is completed after about 2 days.
View Article and Find Full Text PDFThe electrochemical grafting process of 4-nitrobenzene and 4-methoxybenzene (anisole) from diazonium salt solutions has been investigated in situ by monitoring the current density, the band bending, and the nonradiative surface recombination during grafting at different potentials and different concentrations of the diazonium salt in the solution. Ex situ infrared spectroscopic ellipsometry has been used to inspect the Si surface species before and after the grafting process. The band bending decreases with either increasing concentration of diazonium salt or when the redox potential of the diazonium compound (anisole) is nearer to the competing H+/H2 couple.
View Article and Find Full Text PDF