Heteroplasmic mice represent a valuable tool to study the segregation of different mtDNA haplotypes (mtDNAs with differing alleles) in vivo against a defined nuclear background. We describe two methods for the creation of such models, differing in the resulting initial heteroplasmy levels: (a) transfer of ooplasm and (b) fusion of two blastomeres. These methods result in typical heteroplasmy of 5% and 50% donor mtDNA , respectively.
View Article and Find Full Text PDFMitochondrial DNA (mtDNA) encodes vital respiratory machinery. Populations of mtDNA molecules exist in most eukaryotic cells, subject to replication, degradation, mutation, and other population processes. These processes affect the genetic makeup of cellular mtDNA populations, changing cell-to-cell distributions, means, and variances of mutant mtDNA load over time.
View Article and Find Full Text PDFVital mitochondrial DNA (mtDNA) populations exist in cells and may consist of heteroplasmic mixtures of mtDNA types. The evolution of these heteroplasmic populations through development, ageing, and generations is central to genetic diseases, but is poorly understood in mammals. Here we dissect these population dynamics using a dataset of unprecedented size and temporal span, comprising 1947 single-cell oocyte and 899 somatic measurements of heteroplasmy change throughout lifetimes and generations in two genetically distinct mouse models.
View Article and Find Full Text PDFHeterogeneity in mitochondrial content has been previously suggested as a major contributor to cellular noise, with multiple studies indicating its direct involvement in biomedically important cellular phenomena. A recently published dataset explored the connection between mitochondrial functionality and cell physiology, where a non-linearity between mitochondrial functionality and cell size was found. Using mathematical models, we suggest that a combination of metabolic scaling and a simple model of cell death may account for these observations.
View Article and Find Full Text PDFCell-free circulating tumor DNA in the plasma of cancer patients has become a common point of interest as indicator of therapy options and treatment response in clinical cancer research. Especially patient- and tumor-specific single nucleotide variants that accurately distinguish tumor DNA from wild type DNA are promising targets. The reliable detection and quantification of these single-base DNA variants is technically challenging.
View Article and Find Full Text PDFDangerous damage to mitochondrial DNA (mtDNA) can be ameliorated during mammalian development through a highly debated mechanism called the mtDNA bottleneck. Uncertainty surrounding this process limits our ability to address inherited mtDNA diseases. We produce a new, physically motivated, generalisable theoretical model for mtDNA populations during development, allowing the first statistical comparison of proposed bottleneck mechanisms.
View Article and Find Full Text PDFHeteroplasmic mice represent a valuable tool to study the segregation of different mtDNA haplotypes (mtDNAs with differing alleles) in vivo against a defined nuclear background. We describe two methods for the creation of such models, differing in the resulting initial heteroplasmy levels: (1) transfer of ooplasm and (2) fusion of two blastomeres. These methods result in typical heteroplasmy of 5 % and 50 % donor mtDNA, respectively.
View Article and Find Full Text PDFMitochondrial diseases are potentially severe, incurable diseases resulting from dysfunctional mitochondria. Several important mitochondrial diseases are caused by mutations in mitochondrial DNA (mtDNA), the genetic material contained within mitochondria, which is maternally inherited. Classical and modern therapeutic approaches exist to address the inheritance of mtDNA disease, but are potentially complicated by the fact that cellular mtDNA populations evolve according to poorly-understood dynamics during development and organismal lifetimes.
View Article and Find Full Text PDFThe dynamics by which mitochondrial DNA (mtDNA) evolves within organisms are still poorly understood, despite the fact that inheritance and proliferation of mutated mtDNA cause fatal and incurable diseases. When two mtDNA haplotypes are present in a cell, it is usually assumed that segregation (the proliferation of one haplotype over another) is negligible. We challenge this assumption by showing that segregation depends on the genetic distance between haplotypes.
View Article and Find Full Text PDFThe paternally inherited Y chromosome displays the population genetic history of males. While modern domestic horses (Equus caballus) exhibit abundant diversity within maternally inherited mitochondrial DNA, no significant Y-chromosomal sequence diversity has been detected. We used high throughput sequencing technology to identify the first polymorphic Y-chromosomal markers useful for tracing paternal lines.
View Article and Find Full Text PDF