Semi-malignant giant cell tumors of bone (GCTB) are associated with large osteolytic defects and significant bone destructions. Surgical resection remains the standard therapy that is, however, associated with very high recurrence rates. Bioactive glasses (BGs) that are osteogenic but under certain conditions also cytotoxic might be suitable to achieve biological reconstruction with simultaneous reduction of tumor recurrence in GCTB.
View Article and Find Full Text PDFGiant cell tumors of bone (GCTB) are semi-malignant tumors associated with extensive osteolytic defects and massive bone destructions. They display a locally aggressive behavior and a very high recurrence rate. Recently, a single mutation has been identified in GCTB affecting the H3F3A gene coding for the histone variant H3.
View Article and Find Full Text PDFGiant cell tumors of bone (GCTB) are generally benign bone tumors associated with expansive osteolytic defects, a high rate of recurrence and potential malignant transformation. We recently observed silencing of miR-127-3p and miR-376a-3p in GCTB and identified COA1 and PDIA6 as their target genes. Here, we investigate the impact of these microRNAs and their target genes on tumor engraftment and progression of giant cell tumor stromal cells (GCTSC) in vivo by xenotransplantation on the chorioallantoic membrane of chicken eggs.
View Article and Find Full Text PDFBackground: Matrix metalloproteinases (MMPs) are crucially involved in the regulation of multiple stages of cancer progression. Elevated MMP levels have been associated with the development of metastases and poor prognosis in several types of cancer. However, the role of MMPs in osteosarcoma and their prognostic value is still unclear.
View Article and Find Full Text PDFBackground: Growing evidence exists that the neoplastic stromal cell population (GCTSC) within giant cell tumors (GCT) originates from mesenchymal stem cells (MSC). In a previous study we identified a microRNA signature that differentiates between these cell types. Five differentially expressed microRNAs are located within the Dlk1-Dio3 region on chromosome 14.
View Article and Find Full Text PDFGiant cell tumor (GCT) of bone is a generally benign tumor with a locally aggressive behavior. Histologically, GCTs consist of multinucleated giant cells, mononuclear histiocytes and the neoplastic fibroblast-like stromal cells (GCTSC). Growing evidence exists that GCTSCs develop from mesenchymal stem cells (MSCs), but little is known about the underlying molecular mechanisms.
View Article and Find Full Text PDFGiant cell tumor (GCT) derived stromal cells (GCTSCs) have been identified as the neoplastic cell population of GCTs. Within these stromal cells a subpopulation has been identified that shares several features with mesenchymal stem cells (MSCs) indicating that these neoplastic cells develop from MSCs. Although spontaneous transformations of MSC have already been observed in vitro and in vivo the underlying molecular mechanisms are poorly understood.
View Article and Find Full Text PDFGiant cell tumors are heterogeneous tumors consisting of multinucleated giant cells, fibroblast-like stromal cells and mononuclear histiocytes. The stromal cells have been identified as the neoplastic cell population, which promotes the recruitment of histiocytes and the formation of giant cells. Strong evidence exists that these cells develop from mesenchymal stem cells (MSCs) but little is known about the molecular mechanisms involved in GCT tumorigenesis.
View Article and Find Full Text PDF