Background: The mitotic spindle is a complex mechanical apparatus required for accurate segregation of sister chromosomes during mitosis. We designed a genetic screen using automated microscopy to discover factors essential for mitotic progression. Using a RNA interference library of 49,164 double-stranded RNAs targeting 23,835 human genes, we performed a loss of function screen to look for small interfering RNAs that arrest cells in metaphase.
View Article and Find Full Text PDFMicroarrays to examine the global expression levels of microRNAs (miRNAs) in a systematic in-parallel manner have become important tools to help unravel the functions of miRNAs and to understand their roles in RNA-based regulation and their implications in human diseases. We have established a novel miRNA-specific microarray platform that enables the simultaneous expression analysis of both known and predicted miRNAs obtained from human or mouse origin. Chemically modified 2'-O-(2-methoxyethyl)-(MOE) oligoribonucleotide probes were arrayed onto Evanescent Resonance (ER) microchips by robotic spotting.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2006
Human cells have evolved complex signaling networks to coordinate the cell cycle. A detailed understanding of the global regulation of this fundamental process requires comprehensive identification of the genes and pathways involved in the various stages of cell-cycle progression. To this end, we report a genome-wide analysis of the human cell cycle, cell size, and proliferation by targeting >95% of the protein-coding genes in the human genome using small interfering RNAs (siRNAs).
View Article and Find Full Text PDFThe largest gene knock-down experiments performed to date have used multiple short interfering/short hairpin (si/sh)RNAs per gene. To overcome this burden for design of a genome-wide siRNA library, we used the Stuttgart Neural Net Simulator to train algorithms on a data set of 2,182 randomly selected siRNAs targeted to 34 mRNA species, assayed through a high-throughput fluorescent reporter gene system. The algorithm, (BIOPREDsi), reliably predicted activity of 249 siRNAs of an independent test set (Pearson coefficient r = 0.
View Article and Find Full Text PDFIn addition to protein identification, characterization of post-translational modifications (PTMs) is an essential task in proteomics. PTMs represent the major reason for the variety of protein isoforms and they can influence protein structure and function. Upon matrix-assisted laser desorption/ionization (MALDI) most post-translationally modified peptides form a fraction of labile molecular ions, which lose PTM-specific residues only after acceleration.
View Article and Find Full Text PDF