Publications by authors named "Joerg Goettlicher"

We report on integrated geomorphological, mineralogical, geochemical and biological investigations of the hydrothermal vent field located on the floor of the density-stratified acidic (pH ~ 5) crater of the Kolumbo shallow-submarine arc-volcano, near Santorini. Kolumbo features rare geodynamic setting at convergent boundaries, where arc-volcanism and seafloor hydrothermal activity are occurring in thinned continental crust. Special focus is given to unique enrichments of polymetallic spires in Sb and Tl (±Hg, As, Au, Ag, Zn) indicating a new hybrid seafloor analogue of epithermal-to-volcanic-hosted-massive-sulphide deposits.

View Article and Find Full Text PDF

Biofilms can provide a number of different ecological niches for microorganisms. Here, a multispecies biofilm was studied in which pyrite-oxidizing microbes are the primary producers. Its stability allowed not only detailed fluorescence in situ hybridization (FISH)-based characterization of the microbial population in different areas of the biofilm but also to integrate these results with oxygen and pH microsensor measurements conducted before.

View Article and Find Full Text PDF

The use of magnetic activation has been proposed to answer the growing need for assisted bone and vascular remodeling during template/scaffold regeneration. With this in mind, a synthesis procedure was developed to prepare bioactive (Fe2+/Fe3+)-doped hydroxyapatite (Fe-HA), endowed with superparamagnetic-like properties. This new class of magnetic hydroxyapatites can be potentially employed to develop new magnetic ceramic scaffolds with enhanced regenerative properties for bone surgery; in addition, magnetic Fe-HA can find application in anticancer therapies, to replace the widely used magnetic iron oxide nanoparticles, whose long-term cytotoxicity was recently found to reach harmful levels.

View Article and Find Full Text PDF

A highly specific accumulation of the toxic element lead was recently measured in the transition zone between non-calcified and calcified normal human articular cartilage. This transition zone, the so-called `tidemark', is considered to be an active calcification front of great clinical importance. However, little is known about the mechanisms of accumulation and the chemical form of Pb in calcified cartilage and bone.

View Article and Find Full Text PDF