Publications by authors named "Joerg Fleischer"

Background: Accurate detection of pheromones is crucial for chemical communication and reproduction in insects. In holometabolous flies and moths, the sensory neuron membrane protein 1 (SNMP1) is essential for detecting long-chain aliphatic pheromones by olfactory neurons. However, its function in hemimetabolous insects and its role for detecting pheromones of a different chemical nature remain elusive.

View Article and Find Full Text PDF

In the European honey bee (Apis mellifera), the olfactory system is essential for foraging and intraspecific communication via pheromones. Honey bees are equipped with a large repertoire of olfactory receptors belonging to the insect odorant receptor (OR) family. Previous studies have indicated that the transcription level of a few OR types including OR11, a receptor activated by the queen-released pheromone compound (2E)-9-oxodecenoic acid (9-ODA), is significantly higher in the antenna of males (drones) than in female workers.

View Article and Find Full Text PDF

In numerous mammalian species, the nose harbors several compartments populated by chemosensory cells. Among them, the Grueneberg ganglion (GG) located in the anterior nasal region comprises sensory neurons activated by given substances. In rodents, in which the GG has been best studied, these chemical cues mainly include heterocyclic compounds released by predators or by conspecifics.

View Article and Find Full Text PDF

Neurons of the Grueneberg ganglion (GG) in the anterior nasal region of mice respond to a small set of odorous compounds, including given dimethylpyrazines present in mouse urine. Consequently, mouse pups living in murine colonies are presumably commonly exposed to such GG-activating substances. Since stimulation of the GG elicits alarm and stress reactions in mice, the question arises whether such a GG activation potentially inducing stress could be reduced when pups might rather feel secure in the presence of their mother.

View Article and Find Full Text PDF

Many animals respond to threats by releasing alarm pheromones (APs) that warn conspecifics. In mice, detection of the AP 2-sec-butyl-4,5-dihydrothiazole (SBT) is mediated by chemosensory neurons residing in the Grueneberg ganglion (GG) of the anterior nasal region. Although the molecular mechanisms underlying activation of GG neurons by SBT and other substances are still unclear, recent studies have reported an involvement of the transmembrane guanylyl cyclase (GC) subtype GC-G in chemosensory signaling in the GG Here, we show that SBT directly binds with high affinity to the extracellular domain of GC-G and elicits an enhanced enzymatic activity of this protein.

View Article and Find Full Text PDF

The sense of smell enables insects to recognize and discriminate a broad range of volatile chemicals in their environment originating from prey, host plants and conspecifics. These olfactory cues are received by olfactory sensory neurons (OSNs) that relay information about food sources, oviposition sites and mates to the brain and thus elicit distinct odor-evoked behaviors. Research over the last decades has greatly advanced our knowledge concerning the molecular basis underlying the reception of odorous compounds and the mechanisms of signal transduction in OSNs.

View Article and Find Full Text PDF

Under given environmental conditions, the desert locust () forms destructive migratory swarms of billions of animals, leading to enormous crop losses in invaded regions. Swarm formation requires massive reproduction as well as aggregation of the animals. Pheromones that are detected via the olfactory system have been reported to control both reproductive and aggregation behavior.

View Article and Find Full Text PDF

Neurons of the Grueneberg ganglion respond to cool temperatures as well as to distinct odorants and extend axonal processes to the olfactory bulb of the brain. Analyses of transgenic mice, in which Grueneberg ganglion neurons and their axons are labeled, revealed that these axons innervated nine distinct glomeruli distributed in a characteristic topographical pattern in dorsal, lateral, ventral, and medial regions of rather posterior areas in the bulb. To assess activation of these glomeruli (hereinafter designated as Grueneberg glomeruli) upon stimulation of Grueneberg ganglion neurons, mice were exposed to the odorant 2,3-dimethylpyrazine (2,3-DMP) and the expression of the activity-dependent marker c-Fos in juxtaglomerular cells of the relevant glomeruli was monitored.

View Article and Find Full Text PDF

The precise regulation of digestive and other physiological processes in the gastrointestinal tract in accordance with the food ingested requires continuous monitoring of the luminal content by chemosensory cells. With regard to the detection of chemical compounds in the lumen of the gastrointestinal tract, G-protein-coupled receptors (GPCRs) are interesting signaling proteins, since some of them are well known to bind to macronutrients, including sugars, amino acids and lipids. We report that Olfr78, a member of the odorant receptor (OR) class of GPCRs, is expressed in the murine gut.

View Article and Find Full Text PDF

Transmembrane guanylyl cyclases (GCs), with activity regulated by peptide ligands and/or calcium-binding proteins, are essential for various physiological and sensory processes. The mode of activation of the GC subtype GC-G, which is expressed in neurons of the Grueneberg ganglion that respond to cool temperatures, has been elusive. In searching for appropriate stimuli to activate GC-G, we found that its enzymatic activity is directly stimulated by cool temperatures.

View Article and Find Full Text PDF

Neurons of the Grueneberg ganglion (GG) residing in the vestibule of the murine nose are activated by cool ambient temperatures. Activation of thermosensory neurons is usually mediated by thermosensitive ion channels of the transient receptor potential (TRP) family. However, there is no evidence for the expression of thermo-TRPs in the GG, suggesting that GG neurons utilize distinct mechanisms for their responsiveness to cool temperatures.

View Article and Find Full Text PDF

The Grueneberg ganglion (GG) in the anterior nasal region of mice is considered as an olfactory compartment since its neurons were recently observed to be activated by chemical stimuli, in particular by the odorant 2,3-dimethylpyrazine (2,3-DMP). However, it is unclear whether the GG indeed serves an olfactory function since these findings are solely based on the expression of the activity-dependent gene c-Fos. Consequently, it is yet uncertain whether chemical compounds, such as given odorants, elicit electrical responses in GG neurons which are required to convey the chemosensory information to the brain.

View Article and Find Full Text PDF

Neurons of the Grueneberg ganglion (GG) in the anterior nasal region of mouse pups respond to cool temperatures and to a small set of odorants. While the thermosensory reactivity appears to be mediated by elements of a cyclic guanosine monophosphate (cGMP) cascade, the molecular mechanisms underlying the odor-induced responses are unclear. Since odor-responsive GG cells are endowed with elements of a cGMP pathway, specifically the transmembrane guanylyl cyclase subtype GC-G and the cyclic nucleotide-gated ion channel CNGA3, the possibility was explored whether these cGMP signaling elements may also be involved in chemosensory GG responses.

View Article and Find Full Text PDF

Based on a variety of recent findings, the Grueneberg ganglion (GG) in the vestibule of the nasal cavity is considered as an olfactory compartment. However, defined chemical substances that activate GG neurons have not been identified. In this study, the responsiveness of murine GG cells to odorants was examined by monitoring the expression of the activity-dependent gene c-Fos.

View Article and Find Full Text PDF

Within the nasal epithelium of mammals, there are several compartments which are populated with neuronal cells. One of them - the so-called Grueneberg ganglion - is composed of ciliated neurons residing in the anterior region of the nose. Although cells of the Grueneberg ganglion lack direct contact with the lumen of the nasal cavity, they are endowed with features indicative of olfactory sensory neurons, such as the olfactory marker protein and distinct olfactory receptors, as well as projection of axonal processes to the olfactory bulb of the brain.

View Article and Find Full Text PDF

Localized to the vestibule of the nasal cavity, neurons of the Grueneberg ganglion (GG) respond to cool ambient temperatures. The molecular mechanisms underlying this thermal response are still elusive. Recently, it has been suggested that cool temperatures may activate a cyclic guanosine monophosphate (cGMP) pathway in the GG, which would be reminiscent of thermosensory neurons in Caenorhabditis elegans.

View Article and Find Full Text PDF

Perception of chemical stimuli from the environment is essential to most animals; accordingly, they are equipped with a complex olfactory system capable of receiving a nearly unlimited number of odorous substances and pheromones. This enormous task is accomplished by olfactory sensory neurons (OSNs) arranged in several chemosensory compartments in the nose. The sensitive and selective responsiveness of OSNs to odorous molecules and pheromones is based on distinct receptors in their chemosensory membrane; consequently, olfactory receptors play a key role for a reliable recognition and an accurate processing of chemosensory information.

View Article and Find Full Text PDF

Chemosensory neurons in the olfactory epithelium (OE) project axonal processes to the olfactory bulb (OB) of the brain. During embryonic stages, on their trajectory to the OB, the outgrowing axons traverse the so-called cribriform mesenchyme, which is located between the OE and the OB. The molecular cues guiding these axons through the cribriform mesenchyme are largely unknown.

View Article and Find Full Text PDF

The Grueneberg ganglion (GG) - a neuronal cell cluster of unknown function localized to the vestibule of the anterior nasal cavity - is considered as a chemosensory compartment based on the expression of olfactory receptors and the olfactory marker protein. Axonal projection of GG neurons to so-called 'necklace glomeruli' in the olfactory bulb of the brain, which are thought to be important for suckling behaviour in rodent pups, has led to the hypothesis that the GG might be involved in mother/child interactions. To survey potential activation of GG neurons in living animals during the course of mother/child interactions, expression of the activity-dependent gene c-Fos in the GG of neonatal mouse pups was monitored in the presence and absence of the dam.

View Article and Find Full Text PDF

The Grueneberg ganglion (GG) is a cluster of neurons localized to the vestibule of the anterior nasal cavity. Based on axonal projections to the olfactory bulb of the brain, as well as expression of olfactory receptors and the olfactory marker protein, it is considered a chemosensory subsystem. Recently, it was observed that in mice, GG neurons respond to cool ambient temperatures.

View Article and Find Full Text PDF

The Grueneberg ganglion (GG) in the vestibule of the anterior nasal cavity is considered as an olfactory subcompartment based on expression of the olfactory marker protein (OMP) and axonal projection to the olfactory bulb. Searching for olfactory receptors present in the GG, it has been observed recently that V2r83, a member of the V2R class of olfactory receptors, is expressed in numerous cells in the GG of mice. However, no other olfactory receptors have been found to be present in a considerable number of GG neurons so far.

View Article and Find Full Text PDF

The responsiveness of olfactory sensory neurons (OSNs) is based on odorant receptors (ORs) residing in the membrane of chemosensory cilia. It is still elusive as to when and how olfactory cilia are equipped with OR proteins rendering them responsive to odorants. To monitor the appearance of OR proteins in sensory compartments of OSNs, the olfactory epithelium of mice at various stages of prenatal development (lasting 19 days from conception) was investigated using immunohistochemical approaches and antibodies specific for different OR subtypes.

View Article and Find Full Text PDF

Olfactory receptors are supposed to act not only as molecular sensors for odorants but also as cell recognition molecules guiding the axons of olfactory neurons to their appropriate glomerulus in the olfactory bulb. This concept implies that olfactory receptor proteins are located in sensory cilia and in the axons. To approach this critical issue, antibodies were generated against two peptides, one derived from olfactory receptor mOR256-17, one derived from the "mOR37" subfamily.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiond6qu74rre72ad5ojfn0597gvme2g5tv5): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once