Publications by authors named "Joelle Hillion"

The mitochondrial GTP (mtGTP)-dependent phosphoenolpyruvate (PEP) cycle couples mitochondrial PEPCK (PCK2) to pyruvate kinase (PK) in the liver and pancreatic islets to regulate glucose homeostasis. Here, small molecule PK activators accelerated the PEP cycle to improve islet function, as well as metabolic homeostasis, in preclinical rodent models of diabetes. In contrast, treatment with a PK activator did not improve insulin secretion in pck2 mice.

View Article and Find Full Text PDF

Objectives: Although uterine cancer is the fourth most common cause for cancer death in women worldwide, the molecular underpinnings of tumor progression remain poorly understood. The High Mobility Group A1 (HMGA1) gene is overexpressed in aggressive cancers and high levels portend adverse outcomes in diverse tumors. We previously reported that Hmga1a transgenic mice develop uterine tumors with complete penetrance.

View Article and Find Full Text PDF

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive leukemia with high relapse rates compared to B-lineage ALL. We previously showed that HMGA1a transgenic mice develop aggressive T-ALL, indicating that HMGA1 causes leukemic transformation in vivo. HMGA1 is also highly expressed in embryonic stem cells, hematopoietic stem cells and diverse, refractory human cancers.

View Article and Find Full Text PDF

Background: Although recent studies have identified genes expressed in human embryonic stem cells (hESCs) that induce pluripotency, the molecular underpinnings of normal stem cell function remain poorly understood. The high mobility group A1 (HMGA1) gene is highly expressed in hESCs and poorly differentiated, stem-like cancers; however, its role in these settings has been unclear.

Methods/principal Findings: We show that HMGA1 is highly expressed in fully reprogrammed iPSCs and hESCs, with intermediate levels in ECCs and low levels in fibroblasts.

View Article and Find Full Text PDF

Context: Although pancreatic cancer is a common, highly lethal malignancy, the molecular events that enable precursor lesions to become invasive carcinoma remain unclear. We previously reported that the high-mobility group A1 (HMGA1) protein is overexpressed in >90% of primary pancreatic cancers, with absent or low levels in early precursor lesions.

Methods: Here, we investigate the role of HMGA1 in reprogramming pancreatic epithelium into invasive cancer cells.

View Article and Find Full Text PDF

Flavopiridol is a cyclin-dependent kinase inhibitor that induces cell cycle arrest, apoptosis, and clinical responses in selected patients with acute myeloid leukemia (AML). A better understanding of the molecular pathways targeted by flavopiridol is needed to design optimal combinatorial therapy. Here, we report that in vivo administration of flavopiridol induced expression of the BCL-2 anti-apoptotic gene in leukemic blasts from adult patients with refractory AML.

View Article and Find Full Text PDF

Although lung cancer is the leading cause of cancer death worldwide, the precise molecular mechanisms that give rise to lung cancer are incompletely understood. Here, we show that HMGA1 is an important oncogene that drives transformation in undifferentiated, large-cell carcinoma. First, we show that the HMGA1 gene is overexpressed in lung cancer cell lines and primary human lung tumors.

View Article and Find Full Text PDF

Although pancreatic ductal adenocarcinoma is a common and almost uniformly fatal cancer, little is known about the molecular events that lead to tumor progression. The high-mobility group A1 (HMGA1) protein is an architectural transcription factor that has been implicated in the pathogenesis and progression of diverse human cancers, including pancreatic ductal adenocarcinoma. In this study, we investigated HMGA1 expression in pancreatic ductal adenocarcinoma cell lines and surgically resected tumors to determine whether it could be a marker for more advanced disease.

View Article and Find Full Text PDF

Although HMGA1 (high-mobility group A1; formerly HMG-I/Y) is an oncogene that is widely overexpressed in aggressive cancers, the molecular mechanisms underlying transformation by HMGA1 are only beginning to emerge. HMGA1 encodes the HMGA1a and HMGA1b protein isoforms, which function in regulating gene expression. To determine how HMGA1 leads to neoplastic transformation, we looked for genes regulated by HMGA1 using gene expression profile analysis.

View Article and Find Full Text PDF

Uterine cancer is a common cause for cancer death in women and there is no effective therapy for metastatic disease. Thus, research is urgently needed to identify new therapeutic agents. We showed previously that all female HMGA1a transgenic mice develop malignant uterine tumors, indicating that HMGA1a causes uterine cancer in vivo.

View Article and Find Full Text PDF

Although previous studies have established a prominent role for HMGA1 (formerly HMG-I/Y) in aggressive human cancers, the role of HMGA2 (formerly HMGI-C) in malignant transformation has not been clearly defined. The HMGA gene family includes HMGA1, which encodes the HMGA1a and HMGA1b protein isoforms, and HMGA2, which encodes HMGA2. These chromatin-binding proteins function in transcriptional regulation and recent studies also suggest a role in cellular senescence.

View Article and Find Full Text PDF

Uterine cancer is the most common cancer of the female genital tract and is the fourth most frequent cause of cancer death in women in the U.S. Despite the high prevalence of uterine cancers, the molecular events that lead to neoplastic transformation in the uterus are poorly understood.

View Article and Find Full Text PDF

The serine-threonine protein kinase Akt has been identified as an important mediator of cell survival able to counteract apoptotic stimuli. However, hibernation, a model of natural tolerance to cerebral ischemia, is associated with downregulation of Akt. We previously established a model of ischemic tolerance in a PC12 cell line and using this model we now addressed the question whether ischemic tolerance also downregulates Akt in PC12 cells.

View Article and Find Full Text PDF

Adenosine A1 receptors (A1Rs) and adenosine A(2A) receptors (A(2A)Rs) are the major mediators of the neuromodulatory actions of adenosine in the brain. In the striatum A1Rs and A(2A)Rs are mainly co-localized in the GABAergic striatopallidal neurons. In this paper we show that agonist-induced stimulation of A1Rs and A(2A)Rs induces neurite outgrowth processes in the human neuroblastoma cell line SH-SY5Y and also in primary cultures of striatal neuronal precursor cells.

View Article and Find Full Text PDF

Although ischemic tolerance has been described in a variety of primary cell culture systems, no similar in vitro models have been reported with any cell line. A model of ischemic preconditioning in the rat pheochromocytoma PC12 cell line is described here. When compared to nonpreconditioned cells, preexposure of PC12 cells to 6 hours of oxygen and glucose deprivation (OGD) significantly increased cell viability after 15 hours of OGD 24 hours later.

View Article and Find Full Text PDF

Emerging evidence shows that G protein-coupled receptors can form homo- and heteromers. These include adenosine A(2A) receptor-dopamine D(2) receptor heteromers, which are most probably localized in the dendritic spines of the striatopallidal GABAergic neurons, where they are in a position to modulate glutamatergic neurotransmission. The discovery of A(2A) receptor-dopamine D(2) receptor heteromers gives a frame for the well-known antagonistic interaction between both receptors, which is the bases for a new therapeutic approach for neuro-psychiatric disorders, such as Parkinson's disease and schizoprenia.

View Article and Find Full Text PDF

Antagonistic and reciprocal interactions are known to exist between adenosine and dopamine receptors in the striatum. In the present study, double immunofluorescence experiments with confocal laser microscopy showed a high degree of colocalization of adenosine A(2A) receptors (A(2A)R) and dopamine D(2) receptors (D(2)R) in cell membranes of SH-SY5Y human neuroblastoma cells stably transfected with human D(2)R and in cultured striatal cells. A(2A)R/D(2)R heteromeric complexes were demonstrated in coimmunoprecipitation experiments in membrane preparations from D(2)R-transfected SH-SY5Y cells and from mouse fibroblast Ltk(-) cells stably transfected with human D(2)R (long form) and transiently cotransfected with the A(2A)R double-tagged with hemagglutinin.

View Article and Find Full Text PDF