Regulation of directed axon guidance and branching during development is essential for the generation of neuronal networks. However, the molecular mechanisms that underlie interstitial (or collateral) axon branching in the mammalian brain remain unresolved. Here, we investigate interstitial axon branching in vivo using an approach for precise labeling of layer 2/3 callosal projection neurons (CPNs).
View Article and Find Full Text PDFRegulation of directed axon guidance and branching during development is essential for the generation of neuronal networks. However, the molecular mechanisms that underlie interstitial axon branching in the mammalian brain remain unresolved. Here, we investigate interstitial axon branching using an approach for precise labeling of layer 2/3 callosal projection neurons (CPNs), allowing for quantitative analysis of axonal morphology at high acuity and also manipulation of gene expression in well-defined temporal windows.
View Article and Find Full Text PDFProper cortical lamination is essential for cognition, learning, and memory. Within the somatosensory cortex, pyramidal excitatory neurons elaborate axon collateral branches in a laminar-specific manner that dictates synaptic partners and overall circuit organization. Here, we leverage both male and female mouse models, single-cell labeling and imaging approaches to identify intrinsic regulators of laminar-specific collateral, also termed interstitial, axon branching.
View Article and Find Full Text PDFCurr Opin Neurobiol
February 2021
Objective: To evaluate interictal, circulating sphingolipids in women migraineurs.
Methods: In the fasting state, serum samples were obtained pain-free from 88 women with episodic migraine (EM; n=52) and from controls (n=36). Sphingolipids were detected and quantified by high-performance liquid chromatography coupled with tandem mass spectrometry using multiple reaction monitoring.
Ceramide is a bioactive lipid that plays an important role in stress responses leading to apoptosis, cell growth arrest and differentiation. Ceramide production is due in part to sphingomyelin hydrolysis by sphingomyelinases. In brain, neutral sphingomyelinase 2 (nSMase2) is expressed in neurons and increases in its activity and expression have been associated with pro-inflammatory conditions observed in Alzheimer's disease, multiple sclerosis and human immunodeficiency virus (HIV-1) patients.
View Article and Find Full Text PDFBehav Neurosci
October 2014
When long-term memories are reactivated, they can reenter a transient plastic state in which they are vulnerable to interference or physiological manipulations. The present study attempted to directly affect reactivated memories through a stress manipulation, and compared the effects of stress on reactivated and nonreactivated components of a declarative memory in a within-subject design. We presented image pairs that consisted of an image of an animal and an image of an unrelated object.
View Article and Find Full Text PDF