Understanding the niche interactions between blood and bone through the in vitro co-culture of osteo-competent cells and endothelial cells is a key factor in unraveling therapeutic potentials in bone regeneration. This can be additionally supported by employing numerical simulation techniques to assess local physical factors, such as oxygen concentration, and mechanical stimuli, such as shear stress, that can mediate cellular communication. In this study, we developed a Mesenchymal Stem Cell line (MSC) and a Human Umbilical Vein Endothelial Cell line (HUVEC), which were co-cultured under flow conditions in a three-dimensional, porous, natural pullulan/dextran scaffold that was supplemented with hydroxyapatite crystals that allowed for the spontaneous formation of spheroids.
View Article and Find Full Text PDFIncreasing evidences demonstrate the role of sensory innervation in bone metabolism, remodeling and repair, however neurovascular coupling in bone is rarely studied. Using microfluidic devices as an indirect co-culture model to mimic in vitro the physiological scenario of innervation, our group demonstrated that sensory neurons (SNs) were able to regulate the extracellular matrix remodeling by endothelial cells (ECs), in particular through sensory neuropeptides, i.e.
View Article and Find Full Text PDFBackground: Recent physiological and experimental data highlight the role of the sensory nervous system in bone repair, but its precise role on angiogenesis in a bone regeneration context is still unknown. Our previous work demonstrated that sensory neurons (SNs) induce the osteoblastic differentiation of mesenchymal stem cells, but the influence of SNs on endothelial cells (ECs) was not studied.
Methods: Here, in order to study in vitro the interplay between SNs and ECs, we used microfluidic devices as an indirect co-culture model.
Tissue Eng Part C Methods
July 2019
In this article, we first developed a new medium to culture together primary human osteoblastic, osteoclastic, and endothelial cells (ECs) chosen to represent the three major bone cell tissues. Indeed, no study has been conducted on primary human cells and on the phenotype/activity retention of these three primary human cell types. Thus, we established an original triculture model with osteoblastic, osteoclastic, and ECs, where not only both cell phenotype and cell activity were maintained but also cell culture homeostasis.
View Article and Find Full Text PDFElastin-like polypeptides (ELPs) are biocompatible-engineered polypeptides, with promising interest in tissue engineering due to their intrinsic biological and physical properties, and their ease of production. The IKVAV (Ile-Lys-Val-Ala-Val) laminin-1 sequence has been shown to sustain neuron attachment and growth. In this study, the IKVAV adhesion sequence, or a scrambled VKAIV sequence, were incorporated by genetic engineering in the structure of an ELP, expressed in Escherichia coli and purified.
View Article and Find Full Text PDFInnervation by the sensory nervous system plays a key role in skeletal development and in orchestration of bone remodeling and regeneration. However, it is unclear how and in which bone cells can sensory nerves act to control these processes. Here, we show a microfluidic coculture system comprising dorsal root ganglion (DRG) neurons and mesenchymal stem cells (MSCs) that more faithfully represents the in vivo scenario of bone sensory innervation.
View Article and Find Full Text PDFBecause cell interactions play a fundamental role for cell differentiation, we investigated the expression of Pannexin 1 and Pannexin 3 in human bone marrow mesenchymal stromal cells (HBMSCs) in a three-dimensional (3D) microenvironment provided by a polysaccharide-based macroporous scaffold. The pannexin (Panx) family consists of three members, Panx1, Panx2, and Panx3. The roles of Panx large-pore ion and metabolite channels are recognized in many physiological and pathophysiological scenarios, but the role of these proteins in human physiological processes is still under investigation.
View Article and Find Full Text PDFTissue engineering is a promising alternative to autografts, allografts, or biomaterials to address the treatment of severe and large bone lesions. Classically, tissue engineering products associate a scaffold and cells and are implanted or injected into the lesion. These cells must be embedded in an appropriate biocompatible scaffold, which offers a favourable environment for their survival and differentiation.
View Article and Find Full Text PDFIntroduction: Standard care for malignant tumors arising next to a bone structure is surgical removal with safety margins, followed by external beam radiotherapy (EBRT). Complete tumor removal can result in large bone defects. A two-step bone reconstruction technique using the induced membrane (IM) technique has proven its efficacy to bridge gap nonunion.
View Article and Find Full Text PDFBioprinting has emerged as a novel technological approach with the potential to address unsolved questions in the field of tissue engineering. We have recently shown that Laser Assisted Bioprinting (LAB), due to its unprecedented cell printing resolution and precision, is an attractive tool for the in situ printing of a bone substitute. Here, we show that LAB can be used for the in situ printing of mesenchymal stromal cells, associated with collagen and nano-hydroxyapatite, in order to favor bone regeneration, in a calvaria defect model in mice.
View Article and Find Full Text PDFUnlabelled: Insufficient angiogenesis remains a major hurdle in current bone tissue engineering strategies. An extensive body of work has focused on the use of angiogenic factors or endothelial progenitor cells. However, these approaches are inherently complex, in terms of regulatory and methodologic implementation, and present a high cost.
View Article and Find Full Text PDFAdditive manufacturing covers a number of fashionable technologies that attract the interest of researchers in biomaterials and tissue engineering. Additive manufacturing applied to regenerative medicine covers two main areas: 3D printing and biofabrication. If 3D printing has penetrated the world of regenerative medicine, bioassembly and bioimprinting are still in their infancy.
View Article and Find Full Text PDFTissue engineering of large organs is currently limited by the lack of potent vascularization . Tissue-engineered bone grafts can be prevascularized using endothelial cells (ECs). The microvascular network architecture could be controlled by printing ECs following a specific pattern.
View Article and Find Full Text PDFElectron micrographs revealed the presence of gap junctions in osteoblastic cells over 40 years ago. These intercellular channels formed from connexins are present in bone forming osteoblasts, bone resorbing osteoclasts, and osteocytes (mature osteoblasts embedded in the mineralized bone matrix). More recently, genetic and pharmacologic studies revealed the role of connexins, and in particular Cx43, in the differentiation and function of all bone types.
View Article and Find Full Text PDFUnlabelled: In current bone tissue engineering strategies the achievement of sufficient angiogenesis during tissue regeneration is still a major limitation in order to attain full functionality. Several strategies have been described to tackle this problem, mainly by the use of angiogenic factors or endothelial progenitor cells. However, when facing a clinical scenario these approaches are inherently complex and present a high cost.
View Article and Find Full Text PDFAim: To discriminate the most important physicochemical parameters for bone reconstruction, the inflammatory potential of seven nanoporous hydroxyapatite powders synthesized by hard or soft templating was evaluated both in vitro and in vivo.
Materials & Methods: After physical and chemical characterization of the powders, we studied the production of inflammatory mediators by human primary monocytes after 4 and 24 h in contact with powders, and the host response after 2 weeks implantation in a mouse critical size defect model.
Results: In vitro results highlighted increases in the secretion of TNF-α, IL-1, -8, -10 and proMMP-2 and -9 and decreases in the secretion of IL-6 only for powders prepared by hard templating.
Current approaches in bone tissue engineering have shown limited success, mostly owing to insufficient vascularization of the construct. A common approach consists of co-culture of endothelial cells and osteoblastic cells. This strategy uses cells from different sources and differentiation states, thus increasing the complexity upstream of a clinical application.
View Article and Find Full Text PDFThe repair of bone defects is of particular interest for orthopedic, oral, maxillofacial, and dental surgery. Bone loss requiring reconstruction is conventionally addressed through bone grafting. Depending on the size and the location of the defect, this method has limits and risks.
View Article and Find Full Text PDFPolysaccharide-based hydrogels are remarkable materials for the development of tissue engineering strategies as they meet several critical requirements for such applications and they may partly mimic the extracellular matrix. Chitosan is widely envisioned as hydrogel in biomedical fields for its bioresorbability, biocompatibility, and fungistatic and bacteriostatic properties. In this study, we report that the modulation of the polymer concentration, the degree of acetylation, the gelation processes [or neutralization routes (NR)] in the preparation of different chitosan-based hydrogels lead to substantially and significantly different biological responses.
View Article and Find Full Text PDFResearch in bone tissue engineering is focused on the development of alternatives to allogenic and autologous bone grafts that can stimulate bone healing. Here, we present scaffolds composed of the natural hydrophilic polysaccharides pullulan and dextran, supplemented or not with nanocrystalline hydroxyapatite particles (nHA). In vitro studies revealed that these matrices induced the formation of multicellular aggregates and expression of early and late bone specific markers with human bone marrow stromal cells in medium deprived of osteoinductive factors.
View Article and Find Full Text PDF