Intracortical brain-computer interfaces (iBCIs) can restore movement and communication abilities to individuals with paralysis by decoding their intended behavior from neural activity recorded with an implanted device. While this activity yields high-performance decoding over short timescales, neural data are often nonstationary, which can lead to decoder failure if not accounted for. To maintain performance, users must frequently recalibrate decoders, which requires the arduous collection of new neural and behavioral data.
View Article and Find Full Text PDFThe neural population spiking activity recorded by intracortical brain-computer interfaces (iBCIs) contain rich structure. Current models of such spiking activity are largely prepared for individual experimental contexts, restricting data volume to that collectable within a single session and limiting the effectiveness of deep neural networks (DNNs). The purported challenge in aggregating neural spiking data is the pervasiveness of context-dependent shifts in the neural data distributions.
View Article and Find Full Text PDF