This paper introduces a simple method for the measurement of the relative permittivity and the Pockels coefficient of electro-optic (EO) materials in a waveguide up to sub-THz frequencies. By miniaturizing the device and making use of plasmonics, the complexities of traditional methods are mitigated. This work elaborates the fabrication tolerance and simplicity of the method, and highlights its applicability to various materials, substrates and configurations.
View Article and Find Full Text PDFBroadband near-infrared light emitting tunnel junctions are demonstrated with efficient coupling to a silicon photonic waveguide. The metal oxide semiconductor devices show long hybrid photonic-plasmonic mode propagation lengths of approximately 10 μm and thus can be integrated into an overcoupled resonant cavity with quality factor ≈ 49, allowing for tens of picowatt near-infrared light emission coupled directly into a waveguide. The electron inelastic tunneling transition rate and the cavity mode density are modeled, and the transverse magnetic (TM) hybrid mode excitation rate is derived.
View Article and Find Full Text PDFThe quest of a nonlinear optical material that can be easily nanostructured over a large surface area is still ongoing. Here, we demonstrate a nanoimprinted nonlinear barium titanate 2D nanohole array that shows the optical properties of a 2D photonic crystal and a metasurface, depending on the direction of the optical axis. The challenge of nanostructuring the inert metal-oxide is resolved by direct soft nanoimprint lithography with sol-gel derived barium titanate enabling critical dimensions of 120 nm with aspect ratios of five.
View Article and Find Full Text PDFUnlabelled: The microstructural and optical reflectivity response of photonic SiO/TiO nanomultilayers have been investigated as a function of temperature and up to the material system's melting point. The nanomultilayers exhibit high, broadband reflectivities up to 1350 °C with values that exceed 75% for a 1 μm broad wavelength range (600-1600 nm). The optimized nanometer sized, dielectric multilayers undergo phase transformations from anatase TiO and amorphous SiO to the thermodynamically stable phases, rutile and cristobalite, respectively, that alter their structural morphology from the initial multilayers to that of a scatterer.
View Article and Find Full Text PDFWe present a plasmonic platform featuring efficient, broadband metallic fiber-to-chip couplers that directly interface plasmonic slot waveguides, such as compact and high-speed electro-optic modulators. The metallic gratings exhibit an experimental fiber-to-slot coupling efficiency of -2.7 dB with -1.
View Article and Find Full Text PDF